粘滑预测中的机器学习经验

Soumya Gupta, Crispin Chatar, J. Celaya
{"title":"粘滑预测中的机器学习经验","authors":"Soumya Gupta, Crispin Chatar, J. Celaya","doi":"10.2118/197584-ms","DOIUrl":null,"url":null,"abstract":"\n Downhole vibration remains a major challenge for drillers. Today, there is technology to look at the problem from a unique perspective. A novel look at the problem focuses on evaluation of machine learning algorithms to predict downhole vibrations. Prediction is the first step in a longer road map. The goal would be to find an optimal combination of revolutions per minute (RPM) and weight-on-bit (WOB) to remedy drilling vibration in real-time, hence closing the loop. Drilling mechanics data for thousands of wells, acquired over more than ten years was analyzed. Some preparation of the drilling mechanics data was required. Data cleaning was first performed. This included corrections for time-dependent nature of the data. Data imputing for missing values and handling of outliers and anomalies was also performed in this stage. This was followed by feature engineering which included adding variables based on company-wide drilling domain expertise. Variables to capture data patterns and variables for better capturing the time-series dependencies were also created in this stage.\n This paper will discuss methodologies and general rules that were tested for preparing unstructured drilling data. A few of the machine learning algorithms used as building blocks of our full solution are gradient boosting and random forest. Deep learning models were also tested and the value of these are compared. The results were compiled to decide the best algorithm which could further be used to fine-tune optimum performance. The time series aspect of the data is captured in a moving window. As the window increases, the performance of each algorithm also varied. Also, evaluation of the benefits and drawbacks of each algorithm for the drilling predictions is detailed. Ways to improve the accuracy of prediction for downhole vibrations is also suggested with reference to the results showing the logic behind all recommendations. There will be a summary of the details of each finding and a short discussion on the way forward for the industry.","PeriodicalId":11091,"journal":{"name":"Day 3 Wed, November 13, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Lessons Learnt in Stick-Slip Prediction\",\"authors\":\"Soumya Gupta, Crispin Chatar, J. Celaya\",\"doi\":\"10.2118/197584-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Downhole vibration remains a major challenge for drillers. Today, there is technology to look at the problem from a unique perspective. A novel look at the problem focuses on evaluation of machine learning algorithms to predict downhole vibrations. Prediction is the first step in a longer road map. The goal would be to find an optimal combination of revolutions per minute (RPM) and weight-on-bit (WOB) to remedy drilling vibration in real-time, hence closing the loop. Drilling mechanics data for thousands of wells, acquired over more than ten years was analyzed. Some preparation of the drilling mechanics data was required. Data cleaning was first performed. This included corrections for time-dependent nature of the data. Data imputing for missing values and handling of outliers and anomalies was also performed in this stage. This was followed by feature engineering which included adding variables based on company-wide drilling domain expertise. Variables to capture data patterns and variables for better capturing the time-series dependencies were also created in this stage.\\n This paper will discuss methodologies and general rules that were tested for preparing unstructured drilling data. A few of the machine learning algorithms used as building blocks of our full solution are gradient boosting and random forest. Deep learning models were also tested and the value of these are compared. The results were compiled to decide the best algorithm which could further be used to fine-tune optimum performance. The time series aspect of the data is captured in a moving window. As the window increases, the performance of each algorithm also varied. Also, evaluation of the benefits and drawbacks of each algorithm for the drilling predictions is detailed. Ways to improve the accuracy of prediction for downhole vibrations is also suggested with reference to the results showing the logic behind all recommendations. There will be a summary of the details of each finding and a short discussion on the way forward for the industry.\",\"PeriodicalId\":11091,\"journal\":{\"name\":\"Day 3 Wed, November 13, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 13, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197584-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 13, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197584-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

井下振动仍然是钻井人员面临的主要挑战。今天,有技术可以从一个独特的角度来看待这个问题。该问题的一个新视角是评估预测井下振动的机器学习算法。预测是长期路线图的第一步。目标是找到每分钟转数(RPM)和钻压(WOB)的最佳组合,以实时修复钻井振动,从而闭合循环。对十多年来获得的数千口井的钻井力学数据进行了分析。需要准备一些钻井力学数据。首先执行数据清理。这包括对数据时间依赖性的修正。缺失值的数据输入和异常值的处理也在这一阶段进行。接下来是特征工程,包括根据公司范围内的钻井领域专业知识添加变量。在此阶段还创建了用于捕获数据模式的变量和用于更好地捕获时间序列依赖关系的变量。本文将讨论用于准备非结构化钻井数据的方法和一般规则。作为我们完整解决方案的构建块的一些机器学习算法是梯度增强和随机森林。对深度学习模型进行了测试,并比较了这些模型的价值。将结果进行编译以确定最佳算法,该算法可进一步用于微调最佳性能。数据的时间序列方面是在移动窗口中捕获的。随着窗口的增加,每种算法的性能也有所不同。此外,还详细评估了每种钻井预测算法的优缺点。最后,结合分析结果,提出了提高井下振动预测精度的方法。会议将总结每项发现的细节,并就该行业的发展方向进行简短的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Lessons Learnt in Stick-Slip Prediction
Downhole vibration remains a major challenge for drillers. Today, there is technology to look at the problem from a unique perspective. A novel look at the problem focuses on evaluation of machine learning algorithms to predict downhole vibrations. Prediction is the first step in a longer road map. The goal would be to find an optimal combination of revolutions per minute (RPM) and weight-on-bit (WOB) to remedy drilling vibration in real-time, hence closing the loop. Drilling mechanics data for thousands of wells, acquired over more than ten years was analyzed. Some preparation of the drilling mechanics data was required. Data cleaning was first performed. This included corrections for time-dependent nature of the data. Data imputing for missing values and handling of outliers and anomalies was also performed in this stage. This was followed by feature engineering which included adding variables based on company-wide drilling domain expertise. Variables to capture data patterns and variables for better capturing the time-series dependencies were also created in this stage. This paper will discuss methodologies and general rules that were tested for preparing unstructured drilling data. A few of the machine learning algorithms used as building blocks of our full solution are gradient boosting and random forest. Deep learning models were also tested and the value of these are compared. The results were compiled to decide the best algorithm which could further be used to fine-tune optimum performance. The time series aspect of the data is captured in a moving window. As the window increases, the performance of each algorithm also varied. Also, evaluation of the benefits and drawbacks of each algorithm for the drilling predictions is detailed. Ways to improve the accuracy of prediction for downhole vibrations is also suggested with reference to the results showing the logic behind all recommendations. There will be a summary of the details of each finding and a short discussion on the way forward for the industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment of Produced Water with Back Produced ASP Using Analytics to Assess Health Status of DLE Combustion Gas Turbines Design of Economical Polymer and Surfactant-Polymer Processes in High Temperature Carbonated Um Gudair Kuwaiti Field. Enhancement of Routine Data Acquisition in a Giant Offshore Brownfield by Bridging Gaps Identified Through Comprehensive Data Analysis Applying Brain Science to Achieve Organizational Success
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1