隐花色素:一种古老的蓝光感受器影响现代哺乳动物的生理机能

David Smith
{"title":"隐花色素:一种古老的蓝光感受器影响现代哺乳动物的生理机能","authors":"David Smith","doi":"10.18103/mra.v11i1.3523","DOIUrl":null,"url":null,"abstract":"Cryptochromes, evolutionally conserved and retained in mammals as transcriptional regulators having a repressive role in the transcription-translation feedback loop, the molecular mechanism behind the control of the endogenous mammalian circadian clock. This clock mechanism regulates the oscillation of a huge number of clock-controlled output genes. This in turn is responsible for modification of the physiological response of most organs and tissues, to coordinate with diurnal and seasonal changes in light and nutrient availability. Cryptochromes have also been found to participate in additional signalling cascades, outside of the circadian system, forming supplementary feedback loops that initiate cross-talk between systems influencing metabolism, inflammation and DNA damage response to maintain cellular homeostasis. This physiological organisation system has developed from Palaeolithic man but is still relevant in our modern world.","PeriodicalId":94137,"journal":{"name":"Medical research archives","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryptochrome: An ancient blue light photoreceptor impacts modern mammalian physiology\",\"authors\":\"David Smith\",\"doi\":\"10.18103/mra.v11i1.3523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryptochromes, evolutionally conserved and retained in mammals as transcriptional regulators having a repressive role in the transcription-translation feedback loop, the molecular mechanism behind the control of the endogenous mammalian circadian clock. This clock mechanism regulates the oscillation of a huge number of clock-controlled output genes. This in turn is responsible for modification of the physiological response of most organs and tissues, to coordinate with diurnal and seasonal changes in light and nutrient availability. Cryptochromes have also been found to participate in additional signalling cascades, outside of the circadian system, forming supplementary feedback loops that initiate cross-talk between systems influencing metabolism, inflammation and DNA damage response to maintain cellular homeostasis. This physiological organisation system has developed from Palaeolithic man but is still relevant in our modern world.\",\"PeriodicalId\":94137,\"journal\":{\"name\":\"Medical research archives\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical research archives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18103/mra.v11i1.3523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical research archives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18103/mra.v11i1.3523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隐色素,进化上保守并保留在哺乳动物中作为转录调节剂,在转录-翻译反馈回路中具有抑制作用,这是内源性哺乳动物生物钟控制背后的分子机制。这种生物钟机制调节着大量生物钟控制的输出基因的振荡。这反过来又负责修改大多数器官和组织的生理反应,以协调昼夜和季节变化的光和营养的可用性。隐色素也被发现参与了额外的信号级联,在昼夜节律系统之外,形成补充反馈回路,启动影响代谢、炎症和DNA损伤反应的系统之间的串扰,以维持细胞稳态。这种生理组织系统从旧石器时代的人类发展而来,但与我们的现代世界仍然相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cryptochrome: An ancient blue light photoreceptor impacts modern mammalian physiology
Cryptochromes, evolutionally conserved and retained in mammals as transcriptional regulators having a repressive role in the transcription-translation feedback loop, the molecular mechanism behind the control of the endogenous mammalian circadian clock. This clock mechanism regulates the oscillation of a huge number of clock-controlled output genes. This in turn is responsible for modification of the physiological response of most organs and tissues, to coordinate with diurnal and seasonal changes in light and nutrient availability. Cryptochromes have also been found to participate in additional signalling cascades, outside of the circadian system, forming supplementary feedback loops that initiate cross-talk between systems influencing metabolism, inflammation and DNA damage response to maintain cellular homeostasis. This physiological organisation system has developed from Palaeolithic man but is still relevant in our modern world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Achieving Chronic Care Equity by Leveraging the Telehealth Ecosystem (ACCTIVATE): A Multilevel Randomized Controlled Trial Protocol. Cultural Effects on the Performance of Older Haitian Immigrants on Timed Cognitive Tests. Augmenting the Hospital Score with social risk factors to improve prediction for 30-day readmission following acute myocardial infarction. Characteristics associated with social anxiety in adults with developmental stuttering: A review. Air Pollution as an Environmental Risk Factor for Alzheimer's Disease and Related Dementias.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1