真菌的电信号传播

IF 1.2 Q3 Computer Science Bio-Algorithms and Med-Systems Pub Date : 2023-04-20 DOI:10.48550/arXiv.2304.10675
Richard Mayne, Nic Roberts, Neil Phillips, Roshan Weerasekera, A. Adamatzky
{"title":"真菌的电信号传播","authors":"Richard Mayne, Nic Roberts, Neil Phillips, Roshan Weerasekera, A. Adamatzky","doi":"10.48550/arXiv.2304.10675","DOIUrl":null,"url":null,"abstract":"Living fungal mycelium networks are proven to have properties of memristors, capacitors and various sensors. To further progress our designs in fungal electronics we need to evaluate how electrical signals can be propagated through mycelium networks. We investigate the ability of mycelium-bound composites to convey electrical signals, thereby enabling the transmission of frequency-modulated information through mycelium networks. Mycelia were found to reliably transfer signals with a recoverable frequency comparable to the input, in the 100Hz to 10 000Hz frequency range. Mycelial adaptive responses, such as tissue repair, may result in fragile connections, however. While the mean amplitude of output signals was not reproducible among replicate experiments exposed to the same input frequency, the variance across groups was highly consistent. Our work is supported by NARX modelling through which an approximate transfer function was derived. These findings advance the state of the art of using mycelium-bound composites in analogue electronics and unconventional computing.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Propagation of electrical signals by fungi\",\"authors\":\"Richard Mayne, Nic Roberts, Neil Phillips, Roshan Weerasekera, A. Adamatzky\",\"doi\":\"10.48550/arXiv.2304.10675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Living fungal mycelium networks are proven to have properties of memristors, capacitors and various sensors. To further progress our designs in fungal electronics we need to evaluate how electrical signals can be propagated through mycelium networks. We investigate the ability of mycelium-bound composites to convey electrical signals, thereby enabling the transmission of frequency-modulated information through mycelium networks. Mycelia were found to reliably transfer signals with a recoverable frequency comparable to the input, in the 100Hz to 10 000Hz frequency range. Mycelial adaptive responses, such as tissue repair, may result in fragile connections, however. While the mean amplitude of output signals was not reproducible among replicate experiments exposed to the same input frequency, the variance across groups was highly consistent. Our work is supported by NARX modelling through which an approximate transfer function was derived. These findings advance the state of the art of using mycelium-bound composites in analogue electronics and unconventional computing.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.10675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.10675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

活的真菌菌丝体网络已被证明具有忆阻器、电容器和各种传感器的特性。为了进一步推进真菌电子学的设计,我们需要评估电信号如何通过菌丝体网络传播。我们研究了菌丝结合复合材料传递电信号的能力,从而使通过菌丝网络传输频率调制信息成为可能。研究发现,在100Hz到10000hz的频率范围内,菌丝体可以可靠地传输信号,其可恢复频率与输入频率相当。然而,菌丝的适应性反应,如组织修复,可能导致脆弱的连接。虽然在相同输入频率的重复实验中,输出信号的平均幅度不可重复,但组间的方差高度一致。我们的工作得到了NARX模型的支持,通过该模型推导出了一个近似的传递函数。这些发现推动了菌丝结合复合材料在模拟电子学和非常规计算中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Propagation of electrical signals by fungi
Living fungal mycelium networks are proven to have properties of memristors, capacitors and various sensors. To further progress our designs in fungal electronics we need to evaluate how electrical signals can be propagated through mycelium networks. We investigate the ability of mycelium-bound composites to convey electrical signals, thereby enabling the transmission of frequency-modulated information through mycelium networks. Mycelia were found to reliably transfer signals with a recoverable frequency comparable to the input, in the 100Hz to 10 000Hz frequency range. Mycelial adaptive responses, such as tissue repair, may result in fragile connections, however. While the mean amplitude of output signals was not reproducible among replicate experiments exposed to the same input frequency, the variance across groups was highly consistent. Our work is supported by NARX modelling through which an approximate transfer function was derived. These findings advance the state of the art of using mycelium-bound composites in analogue electronics and unconventional computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-Algorithms and Med-Systems
Bio-Algorithms and Med-Systems MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
3.80
自引率
0.00%
发文量
3
期刊介绍: The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.
期刊最新文献
Propagation of electrical signals by fungi Light induced spiking of proteinoids Transfer Functions of Proteinoid Microspheres Application of quantum entanglement induced polarization for dual-positron and prompt gamma imaging. Transcriptomic data analysis of melanocytes and melanoma cell lines of LAT transporter genes for precise medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1