FDD 3D大规模MIMO/FD-MIMO系统的下行信道估计和预编码

Hayder Almosa, R. Shafin, S. Mosleh, Zhou Zhou, Yi Li, Jianzhong Zhang, Lingjia Liu
{"title":"FDD 3D大规模MIMO/FD-MIMO系统的下行信道估计和预编码","authors":"Hayder Almosa, R. Shafin, S. Mosleh, Zhou Zhou, Yi Li, Jianzhong Zhang, Lingjia Liu","doi":"10.1109/WOCC.2017.7929002","DOIUrl":null,"url":null,"abstract":"Accurate downlink channel state information at the transmitter (CSIT) is essential to utilize the benefit of 3D Massive MIMO/FD-MIMO systems. Conventional approaches to obtain CSIT for FDD MIMO systems require downlink training and CSI feedback. However, such training will cause a large overhead for 3D Massive MIMO/FD-MIMO systems because of the large dimensionality of the channel matrix. In this paper, we design an efficient downlink beamforming method based on partial CSI. By exploiting the relationship between uplink (UL) direction-of-arrivals (DoAs) and downlink (DL) direction-of-departures (DoDs), we derive an expression for estimated downlink DoDs, which will be used for downlink beamforming to compare the performance with traditional method in terms of downlink achievable rate that we derived. Simulation results also verifies that, in terms of achievable rate, our proposed method outperform the traditional beamforming method.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Downlink channel estimation and precoding for FDD 3D Massive MIMO/FD-MIMO systems\",\"authors\":\"Hayder Almosa, R. Shafin, S. Mosleh, Zhou Zhou, Yi Li, Jianzhong Zhang, Lingjia Liu\",\"doi\":\"10.1109/WOCC.2017.7929002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate downlink channel state information at the transmitter (CSIT) is essential to utilize the benefit of 3D Massive MIMO/FD-MIMO systems. Conventional approaches to obtain CSIT for FDD MIMO systems require downlink training and CSI feedback. However, such training will cause a large overhead for 3D Massive MIMO/FD-MIMO systems because of the large dimensionality of the channel matrix. In this paper, we design an efficient downlink beamforming method based on partial CSI. By exploiting the relationship between uplink (UL) direction-of-arrivals (DoAs) and downlink (DL) direction-of-departures (DoDs), we derive an expression for estimated downlink DoDs, which will be used for downlink beamforming to compare the performance with traditional method in terms of downlink achievable rate that we derived. Simulation results also verifies that, in terms of achievable rate, our proposed method outperform the traditional beamforming method.\",\"PeriodicalId\":6471,\"journal\":{\"name\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2017.7929002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7929002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

发射机(CSIT)上准确的下行信道状态信息对于利用3D大规模MIMO/FD-MIMO系统的优势至关重要。获取FDD MIMO系统CSIT的传统方法需要下行链路训练和CSI反馈。然而,由于通道矩阵的大维度,这种训练将给3D Massive MIMO/FD-MIMO系统带来很大的开销。本文设计了一种基于部分CSI的高效下行波束形成方法。通过利用上行链路(UL)到达方向(DoAs)和下行链路(DL)离开方向(DoDs)之间的关系,我们推导了估计下行链路DoDs的表达式,该表达式将用于下行波束形成,并根据我们推导的下行可实现速率与传统方法进行性能比较。仿真结果也验证了该方法在可达率方面优于传统的波束形成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Downlink channel estimation and precoding for FDD 3D Massive MIMO/FD-MIMO systems
Accurate downlink channel state information at the transmitter (CSIT) is essential to utilize the benefit of 3D Massive MIMO/FD-MIMO systems. Conventional approaches to obtain CSIT for FDD MIMO systems require downlink training and CSI feedback. However, such training will cause a large overhead for 3D Massive MIMO/FD-MIMO systems because of the large dimensionality of the channel matrix. In this paper, we design an efficient downlink beamforming method based on partial CSI. By exploiting the relationship between uplink (UL) direction-of-arrivals (DoAs) and downlink (DL) direction-of-departures (DoDs), we derive an expression for estimated downlink DoDs, which will be used for downlink beamforming to compare the performance with traditional method in terms of downlink achievable rate that we derived. Simulation results also verifies that, in terms of achievable rate, our proposed method outperform the traditional beamforming method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Index Experimental investigation of DCO-OFDM adaptive loading using Si PN-based receiver Linearization of a Radio-over-Fiber mobile fronthaul with feedback loop Decision tree rule-based feature selection for large-scale imbalanced data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1