S. Moon, I. Janssens, K. Kim, B. Stijlemans, S. Magez, M. Radwanska
{"title":"布氏锥虫感染耗竭记忆B细胞导致宿主无法回忆保护性B细胞反应。","authors":"S. Moon, I. Janssens, K. Kim, B. Stijlemans, S. Magez, M. Radwanska","doi":"10.1093/infdis/jiac112","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nTrypanosoma brucei brucei (T. b. brucei) evades host immune responses by multiple means, including the disruption of B cell homeostasis. This hampers anti-trypanosome vaccine development. As the cellular mechanism underlying this pathology has never been addressed, our study focuses on the fate of memory B cells (MBCs) in vaccinated mice upon trypanosome challenge.\n\n\nMETHODS\nA trypanosome variant surface glycoprotein (VSG) and fluorescent phycoerythrin (PE) were used as immunization antigens. Functional and cellular characteristics of antigen-specific MBCs were studied after homologous and heterologous parasite challenge.\n\n\nRESULTS\nImmunization with AnTat 1.1 VSG triggers a specific antibody response and isotype-switched CD73 +CD273 +CD80 + MBCs, delivering 90% sterile protection against a homologous parasite challenge. As expected, AnTat 1.1 VSG immunization does not protect against infection with heterologous VSG-switched parasites. After successful curative drug treatment, mice were shown to have completely lost their previously induced protective immunity against the homologous parasites, coinciding with the loss of vaccine-induced MBCs. A PE immunization approach confirmed that trypanosome infections cause the general loss of antigen-specific splenic and bone marrow MBCs, and a reduction in antigen-specific IgGs.\n\n\nCONCLUSION\nTrypanosomosis induces general immunological memory loss. This benefits the parasites by reducing the stringency for antigenic variation requirements.","PeriodicalId":22572,"journal":{"name":"The Indonesian Journal of Infectious Diseases","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Trypanosoma brucei brucei Infection Depletes Memory B Cells Resulting in Inability of the Host to Recall Protective B Cells Responses.\",\"authors\":\"S. Moon, I. Janssens, K. Kim, B. Stijlemans, S. Magez, M. Radwanska\",\"doi\":\"10.1093/infdis/jiac112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nTrypanosoma brucei brucei (T. b. brucei) evades host immune responses by multiple means, including the disruption of B cell homeostasis. This hampers anti-trypanosome vaccine development. As the cellular mechanism underlying this pathology has never been addressed, our study focuses on the fate of memory B cells (MBCs) in vaccinated mice upon trypanosome challenge.\\n\\n\\nMETHODS\\nA trypanosome variant surface glycoprotein (VSG) and fluorescent phycoerythrin (PE) were used as immunization antigens. Functional and cellular characteristics of antigen-specific MBCs were studied after homologous and heterologous parasite challenge.\\n\\n\\nRESULTS\\nImmunization with AnTat 1.1 VSG triggers a specific antibody response and isotype-switched CD73 +CD273 +CD80 + MBCs, delivering 90% sterile protection against a homologous parasite challenge. As expected, AnTat 1.1 VSG immunization does not protect against infection with heterologous VSG-switched parasites. After successful curative drug treatment, mice were shown to have completely lost their previously induced protective immunity against the homologous parasites, coinciding with the loss of vaccine-induced MBCs. A PE immunization approach confirmed that trypanosome infections cause the general loss of antigen-specific splenic and bone marrow MBCs, and a reduction in antigen-specific IgGs.\\n\\n\\nCONCLUSION\\nTrypanosomosis induces general immunological memory loss. This benefits the parasites by reducing the stringency for antigenic variation requirements.\",\"PeriodicalId\":22572,\"journal\":{\"name\":\"The Indonesian Journal of Infectious Diseases\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Indonesian Journal of Infectious Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/infdis/jiac112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Indonesian Journal of Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/infdis/jiac112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trypanosoma brucei brucei Infection Depletes Memory B Cells Resulting in Inability of the Host to Recall Protective B Cells Responses.
BACKGROUND
Trypanosoma brucei brucei (T. b. brucei) evades host immune responses by multiple means, including the disruption of B cell homeostasis. This hampers anti-trypanosome vaccine development. As the cellular mechanism underlying this pathology has never been addressed, our study focuses on the fate of memory B cells (MBCs) in vaccinated mice upon trypanosome challenge.
METHODS
A trypanosome variant surface glycoprotein (VSG) and fluorescent phycoerythrin (PE) were used as immunization antigens. Functional and cellular characteristics of antigen-specific MBCs were studied after homologous and heterologous parasite challenge.
RESULTS
Immunization with AnTat 1.1 VSG triggers a specific antibody response and isotype-switched CD73 +CD273 +CD80 + MBCs, delivering 90% sterile protection against a homologous parasite challenge. As expected, AnTat 1.1 VSG immunization does not protect against infection with heterologous VSG-switched parasites. After successful curative drug treatment, mice were shown to have completely lost their previously induced protective immunity against the homologous parasites, coinciding with the loss of vaccine-induced MBCs. A PE immunization approach confirmed that trypanosome infections cause the general loss of antigen-specific splenic and bone marrow MBCs, and a reduction in antigen-specific IgGs.
CONCLUSION
Trypanosomosis induces general immunological memory loss. This benefits the parasites by reducing the stringency for antigenic variation requirements.