用CO2和N2刺激循环甲烷水合物生产

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-01 DOI:10.2516/OGST/2020097
Xia Zhizeng, Jian Hou, Xuewu Wang, Xiaodong Dai, Ming-Tchang. Liu
{"title":"用CO2和N2刺激循环甲烷水合物生产","authors":"Xia Zhizeng, Jian Hou, Xuewu Wang, Xiaodong Dai, Ming-Tchang. Liu","doi":"10.2516/OGST/2020097","DOIUrl":null,"url":null,"abstract":"The cyclic methane hydrate production method was proposed with CO2 and N2 mixture stimulation. The cyclic production model was established based on actual hydrate reservoir parameters, accordingly, the production characteristics were analyzed, and a sensitivity analysis was conducted. The results show the following: (1) The depressurization mechanism is dominant in the cyclic production. CH4 production and CH4 hydrate dissociation can be greatly enhanced because the cyclic process can effectively reduce the partial pressure of CH4 (gas phase). However, there is a limited effect for CO2 storage. (2) Heat supply is essential for continuous hydrate dissociation. The CH4 hydrate dissociation degree is the highest in the near-wellbore area; in addition, the fluid porosity and effective permeability are significantly improved, and the reservoir temperature is obviously decreased. (3) The initial CH4 hydrate saturation, absolute permeability, intrinsic CO2 hydrate formation kinetic constant, injection time and production time can significantly influence the production performance of the natural gas hydrate reservoir.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cyclic methane hydrate production stimulated with CO2 and N2\",\"authors\":\"Xia Zhizeng, Jian Hou, Xuewu Wang, Xiaodong Dai, Ming-Tchang. Liu\",\"doi\":\"10.2516/OGST/2020097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cyclic methane hydrate production method was proposed with CO2 and N2 mixture stimulation. The cyclic production model was established based on actual hydrate reservoir parameters, accordingly, the production characteristics were analyzed, and a sensitivity analysis was conducted. The results show the following: (1) The depressurization mechanism is dominant in the cyclic production. CH4 production and CH4 hydrate dissociation can be greatly enhanced because the cyclic process can effectively reduce the partial pressure of CH4 (gas phase). However, there is a limited effect for CO2 storage. (2) Heat supply is essential for continuous hydrate dissociation. The CH4 hydrate dissociation degree is the highest in the near-wellbore area; in addition, the fluid porosity and effective permeability are significantly improved, and the reservoir temperature is obviously decreased. (3) The initial CH4 hydrate saturation, absolute permeability, intrinsic CO2 hydrate formation kinetic constant, injection time and production time can significantly influence the production performance of the natural gas hydrate reservoir.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2020097\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2020097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

提出了CO2和N2混合增产循环开采甲烷水合物的方法。根据实际水合物储层参数建立了循环开采模型,据此分析了开采特征,并进行了敏感性分析。结果表明:(1)降压机理在循环开采中占主导地位。由于循环过程可以有效地降低CH4(气相)的分压,因此CH4的生成和CH4水合物的解离可以大大增强。然而,对二氧化碳储存的影响有限。(2)热量是水合物连续分解的必要条件。CH4水合物解离程度在近井筒区域最高;流体孔隙度和有效渗透率明显提高,储层温度明显降低。(3)初始CH4水合物饱和度、绝对渗透率、固有CO2水合物形成动力学常数、注入时间和开采时间对天然气水合物储层的生产动态有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyclic methane hydrate production stimulated with CO2 and N2
The cyclic methane hydrate production method was proposed with CO2 and N2 mixture stimulation. The cyclic production model was established based on actual hydrate reservoir parameters, accordingly, the production characteristics were analyzed, and a sensitivity analysis was conducted. The results show the following: (1) The depressurization mechanism is dominant in the cyclic production. CH4 production and CH4 hydrate dissociation can be greatly enhanced because the cyclic process can effectively reduce the partial pressure of CH4 (gas phase). However, there is a limited effect for CO2 storage. (2) Heat supply is essential for continuous hydrate dissociation. The CH4 hydrate dissociation degree is the highest in the near-wellbore area; in addition, the fluid porosity and effective permeability are significantly improved, and the reservoir temperature is obviously decreased. (3) The initial CH4 hydrate saturation, absolute permeability, intrinsic CO2 hydrate formation kinetic constant, injection time and production time can significantly influence the production performance of the natural gas hydrate reservoir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1