12000通道CMS高粒度量热计样机的DAQ系统。

B. Acar, G. Adamov, C. Adloff, S. Afanasiev, N. Akchurin, B. Akgün, M. Alhusseini, J. Alison, G. Altopp, M. Alyari, S. An, S. Anagul, I. Andreev, M. Andrews, P. Aspell, I. A. Atakisi, O. Bach, A. Baden, G. Bakas, A. Bakshi, S. Banerjee, P. Bargassa, D. Barney, E. Becheva, P. Behera, A. Belloni, T. Bergauer, M. Besançon, S. Bhattacharya, S. Bhattacharya, D. Bhowmik, P. Bloch, A. Bodek, G. Bombardi, M. Bonanomi, A. Bonnemaison, S. Bonomally, J. Borg, F. Bouyjou, D. Braga, J. Brashear, E. Brondolin, P. Bryant, J. Bueghly, B. Bilki, B. Burkle, A. Butler-Nalin, S. Callier, D. Calvet, X. Cao, B. Caraway, S. Caregari, L. Ceard, Y. C. Çekmecelioğlu, S. Cerci, G. Cerminara, N. Charitonidis, R. Chatterjee, Y. Chen, Z. Chen, K. Cheng, S. Chernichenko, H. Cheung, C. Chien, S. Choudhury, D. Čoko, G. Collura, F. Couderc, L. Cristella, I. Dumanoglu, D. Dannheim, P. Dauncey, A. David, G. Davies, E. Day, P. DeBarbaro, F. De Guio, C. de La Taille, M. De Silva, P. Debbins, E. Delagnes, J. Deltoro, G. Derylo, P.G. Dias de Al
{"title":"12000通道CMS高粒度量热计样机的DAQ系统。","authors":"B. Acar, G. Adamov, C. Adloff, S. Afanasiev, N. Akchurin, B. Akgün, M. Alhusseini, J. Alison, G. Altopp, M. Alyari, S. An, S. Anagul, I. Andreev, M. Andrews, P. Aspell, I. A. Atakisi, O. Bach, A. Baden, G. Bakas, A. Bakshi, S. Banerjee, P. Bargassa, D. Barney, E. Becheva, P. Behera, A. Belloni, T. Bergauer, M. Besançon, S. Bhattacharya, S. Bhattacharya, D. Bhowmik, P. Bloch, A. Bodek, G. Bombardi, M. Bonanomi, A. Bonnemaison, S. Bonomally, J. Borg, F. Bouyjou, D. Braga, J. Brashear, E. Brondolin, P. Bryant, J. Bueghly, B. Bilki, B. Burkle, A. Butler-Nalin, S. Callier, D. Calvet, X. Cao, B. Caraway, S. Caregari, L. Ceard, Y. C. Çekmecelioğlu, S. Cerci, G. Cerminara, N. Charitonidis, R. Chatterjee, Y. Chen, Z. Chen, K. Cheng, S. Chernichenko, H. Cheung, C. Chien, S. Choudhury, D. Čoko, G. Collura, F. Couderc, L. Cristella, I. Dumanoglu, D. Dannheim, P. Dauncey, A. David, G. Davies, E. Day, P. DeBarbaro, F. De Guio, C. de La Taille, M. De Silva, P. Debbins, E. Delagnes, J. Deltoro, G. Derylo, P.G. Dias de Al","doi":"10.1088/1748-0221/16/04/T04001","DOIUrl":null,"url":null,"abstract":"The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${\\approx}12,000\\rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers.","PeriodicalId":8827,"journal":{"name":"arXiv: Instrumentation and Detectors","volume":"379 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The DAQ system of the 12,000 Channel CMS High Granularity Calorimeter Prototype.\",\"authors\":\"B. Acar, G. Adamov, C. Adloff, S. Afanasiev, N. Akchurin, B. Akgün, M. Alhusseini, J. Alison, G. Altopp, M. Alyari, S. An, S. Anagul, I. Andreev, M. Andrews, P. Aspell, I. A. Atakisi, O. Bach, A. Baden, G. Bakas, A. Bakshi, S. Banerjee, P. Bargassa, D. Barney, E. Becheva, P. Behera, A. Belloni, T. Bergauer, M. Besançon, S. Bhattacharya, S. Bhattacharya, D. Bhowmik, P. Bloch, A. Bodek, G. Bombardi, M. Bonanomi, A. Bonnemaison, S. Bonomally, J. Borg, F. Bouyjou, D. Braga, J. Brashear, E. Brondolin, P. Bryant, J. Bueghly, B. Bilki, B. Burkle, A. Butler-Nalin, S. Callier, D. Calvet, X. Cao, B. Caraway, S. Caregari, L. Ceard, Y. C. Çekmecelioğlu, S. Cerci, G. Cerminara, N. Charitonidis, R. Chatterjee, Y. Chen, Z. Chen, K. Cheng, S. Chernichenko, H. Cheung, C. Chien, S. Choudhury, D. Čoko, G. Collura, F. Couderc, L. Cristella, I. Dumanoglu, D. Dannheim, P. Dauncey, A. David, G. Davies, E. Day, P. DeBarbaro, F. De Guio, C. de La Taille, M. De Silva, P. Debbins, E. Delagnes, J. Deltoro, G. Derylo, P.G. Dias de Al\",\"doi\":\"10.1088/1748-0221/16/04/T04001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${\\\\approx}12,000\\\\rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers.\",\"PeriodicalId\":8827,\"journal\":{\"name\":\"arXiv: Instrumentation and Detectors\",\"volume\":\"379 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Instrumentation and Detectors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/16/04/T04001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/16/04/T04001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

欧洲核子研究中心(CERN)大型强子对撞机(HL-LHC)的CMS实验将进行升级,以适应高光度大型强子对撞机(HL-LHC)预期的瞬时光度增加5倍。与这种增加相伴随的是每束交叉中相互作用数量的增加以及总电离剂量和通量的显著增加。升级的一部分是用配备硅传感器的高粒度采样量热计替换当前的端帽量热计,旨在控制高碰撞率。作为该量热计开发的一部分,使用原型分段硅探测器进行了不同采样配置的一系列光束测试。在2018年底在欧洲核子研究中心SPS进行的最近一次测试中,用高能电子、介子和μ子束研究了配备了大约12,000个硅传感器通道的原型量热计的性能。本文描述了使用现成的FPGA夹层和低成本树莓派计算机构建的定制可扩展数据采集系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The DAQ system of the 12,000 Channel CMS High Granularity Calorimeter Prototype.
The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${\approx}12,000\rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Compensating Co-Magnetometer vs. Spin-Exchange Relaxation-Free Magnetometer: Sensitivity To Nonmagnetic Spin Couplings Fuel rod classification from Passive Gamma Emission Tomography (PGET) of spent nuclear fuel assemblies Search for double $$\beta $$-decay modes of $$^{64}$$Zn using purified zinc Construction and commissioning of CMS CE prototype silicon modules MeV-scale performance of water-based and pure liquid scintillator detectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1