转基因微生物在潜在人类淀粉样蛋白搜索中的应用

Q3 Agricultural and Biological Sciences Ecological genetics Pub Date : 2022-12-08 DOI:10.17816/ecogen112346
Marina V. Ryabinina, Andrew A. Zelinsky, A. Rubel
{"title":"转基因微生物在潜在人类淀粉样蛋白搜索中的应用","authors":"Marina V. Ryabinina, Andrew A. Zelinsky, A. Rubel","doi":"10.17816/ecogen112346","DOIUrl":null,"url":null,"abstract":"Amyloids are fibrous protein structures often found in patients with severe diseases, such as Alzheimers, Parkinsons diseases etc. A number of studies have shown that the production of heterologous amyloidogenic proteins in Saccharomyces cerevisiae strains results in formation of amyloid aggregates with properties similar to those found in mammals. \nAmyloid aggregates formed in yeasts usually do not have their own phenotypic manifestation. To assess amyloidogenic potential of individual proteins a yeast test-system was developed under supervision of Prof. Y.O. Chernoff. The system is based on usage of genetically modified S. cerevisiae cells auxotrophic for certain growth factors, allowing effective phenotypic selection to search for amyloidogenic proteins within proteomes of various organisms [1]. Using this test-system, our laboratory evaluated amyloid potential of a spectrum of human proteins, the amyloidogenicity of which was previously predicted by bioinformatics algorithms. The proteins that have shown amyloidogenic potential in yeast-based model are being currently tested in vitro and in vivo. Some mutant Escherichia coli strains can be applied for studying propensity of heterologous proteins to form amyloids in vitro. Thus, application of genetically modified microorganisms makes it possible to identify new human amyloidogenic proteins and to improve predictive ability of bioinformatics algorithms. \nThe research is supported by RSF grant №20-14-00148 and by St. Petersburg State University (project No. 93025998). Authors acknowledge SPbSU Resource Centers Chromas, Molecular and Cell Technologies and Biobank.","PeriodicalId":11431,"journal":{"name":"Ecological genetics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of genetically modified microorganisms for potential human amyloids search\",\"authors\":\"Marina V. Ryabinina, Andrew A. Zelinsky, A. Rubel\",\"doi\":\"10.17816/ecogen112346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amyloids are fibrous protein structures often found in patients with severe diseases, such as Alzheimers, Parkinsons diseases etc. A number of studies have shown that the production of heterologous amyloidogenic proteins in Saccharomyces cerevisiae strains results in formation of amyloid aggregates with properties similar to those found in mammals. \\nAmyloid aggregates formed in yeasts usually do not have their own phenotypic manifestation. To assess amyloidogenic potential of individual proteins a yeast test-system was developed under supervision of Prof. Y.O. Chernoff. The system is based on usage of genetically modified S. cerevisiae cells auxotrophic for certain growth factors, allowing effective phenotypic selection to search for amyloidogenic proteins within proteomes of various organisms [1]. Using this test-system, our laboratory evaluated amyloid potential of a spectrum of human proteins, the amyloidogenicity of which was previously predicted by bioinformatics algorithms. The proteins that have shown amyloidogenic potential in yeast-based model are being currently tested in vitro and in vivo. Some mutant Escherichia coli strains can be applied for studying propensity of heterologous proteins to form amyloids in vitro. Thus, application of genetically modified microorganisms makes it possible to identify new human amyloidogenic proteins and to improve predictive ability of bioinformatics algorithms. \\nThe research is supported by RSF grant №20-14-00148 and by St. Petersburg State University (project No. 93025998). Authors acknowledge SPbSU Resource Centers Chromas, Molecular and Cell Technologies and Biobank.\",\"PeriodicalId\":11431,\"journal\":{\"name\":\"Ecological genetics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/ecogen112346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/ecogen112346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

淀粉样蛋白是一种纤维蛋白结构,常见于阿尔茨海默病、帕金森病等重症患者。许多研究表明,酿酒酵母菌株中异源淀粉样蛋白的产生导致淀粉样蛋白聚集体的形成,其性质与哺乳动物相似。酵母中形成的淀粉样蛋白聚集体通常没有自己的表型表现。为了评估单个蛋白的淀粉样蛋白形成潜力,在Y.O. Chernoff教授的指导下开发了酵母测试系统。该系统基于利用转基因酿酒酵母细胞对某些生长因子的营养缺陷,允许有效的表型选择,在各种生物体的蛋白质组中寻找淀粉样蛋白[1]。使用该测试系统,我们的实验室评估了一系列人类蛋白质的淀粉样蛋白潜力,这些蛋白质的淀粉样蛋白形成性以前是通过生物信息学算法预测的。在酵母为基础的模型中显示出淀粉样蛋白潜力的蛋白质目前正在体外和体内进行测试。一些突变型大肠杆菌菌株可用于研究外源蛋白在体外形成淀粉样蛋白的倾向。因此,转基因微生物的应用使鉴定新的人类淀粉样蛋白和提高生物信息学算法的预测能力成为可能。该研究得到了俄罗斯国家科学基金资助№20-14-00148和圣彼得堡国立大学(项目号93025998)的支持。作者感谢SPbSU资源中心Chromas,分子和细胞技术和生物银行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of genetically modified microorganisms for potential human amyloids search
Amyloids are fibrous protein structures often found in patients with severe diseases, such as Alzheimers, Parkinsons diseases etc. A number of studies have shown that the production of heterologous amyloidogenic proteins in Saccharomyces cerevisiae strains results in formation of amyloid aggregates with properties similar to those found in mammals. Amyloid aggregates formed in yeasts usually do not have their own phenotypic manifestation. To assess amyloidogenic potential of individual proteins a yeast test-system was developed under supervision of Prof. Y.O. Chernoff. The system is based on usage of genetically modified S. cerevisiae cells auxotrophic for certain growth factors, allowing effective phenotypic selection to search for amyloidogenic proteins within proteomes of various organisms [1]. Using this test-system, our laboratory evaluated amyloid potential of a spectrum of human proteins, the amyloidogenicity of which was previously predicted by bioinformatics algorithms. The proteins that have shown amyloidogenic potential in yeast-based model are being currently tested in vitro and in vivo. Some mutant Escherichia coli strains can be applied for studying propensity of heterologous proteins to form amyloids in vitro. Thus, application of genetically modified microorganisms makes it possible to identify new human amyloidogenic proteins and to improve predictive ability of bioinformatics algorithms. The research is supported by RSF grant №20-14-00148 and by St. Petersburg State University (project No. 93025998). Authors acknowledge SPbSU Resource Centers Chromas, Molecular and Cell Technologies and Biobank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological genetics
Ecological genetics Environmental Science-Ecology
CiteScore
0.90
自引率
0.00%
发文量
22
期刊介绍: The journal Ecological genetics is an international journal which accepts for consideration original manuscripts that reflect the results of field and experimental studies, and fundamental research of broad conceptual and/or comparative context corresponding to the profile of the Journal. Once a year, the editorial Board reviews and, if necessary, corrects the rules for authors and the journal rubrics.
期刊最新文献
CRISPR/Cas editing of a CPC gene in Arabidopsis thaliana Hairy roots biochemical characteristics of vegetable pea’s morphotype with modified leaf Erratum to “The strong base for using base editing in plants” (doi: 10.17816/ecogen567885) PCR-based genome walking methods (review) Ecological genetics. What is it? 20 years later
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1