{"title":"基于随机梯度下降法的纯输出土木结构状态评估方法","authors":"P. Ni, X. Ye, Yang Ding","doi":"10.1002/stc.3132","DOIUrl":null,"url":null,"abstract":"The interesting to assess the condition of a structure with structural health monitoring data has gained many attentions. Most of the existing methods require the measurement at the force location. This paper presents a novel output‐only condition assessment method that does not require measurement at the force location. The unknown structural damage indices and input force can be identified with the stochastic gradient descent method. The dynamic acceleration response sensitivities with respect to the unknown structural damage indices and input force are derived analytically. Both unknown damage indices and unknown input force can be identified by minimizing the discrepancy between the measured and calculated vibration data. Numerical studies on a two‐dimensional truss and seven‐floor frame and experimental studies on a steel frame structure are presented to verify the accuracy and efficiency of the proposed method. Results demonstrate that the damage severity, location, and unknown input force can be identified. Also, the measurement at the force location is not required. Furthermore, when 20% measurement noise is considered, the identified error is less than 5%.","PeriodicalId":22049,"journal":{"name":"Structural Control and Health Monitoring","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An output‐only structural condition assessment method for civil structures by the stochastic gradient descent method\",\"authors\":\"P. Ni, X. Ye, Yang Ding\",\"doi\":\"10.1002/stc.3132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interesting to assess the condition of a structure with structural health monitoring data has gained many attentions. Most of the existing methods require the measurement at the force location. This paper presents a novel output‐only condition assessment method that does not require measurement at the force location. The unknown structural damage indices and input force can be identified with the stochastic gradient descent method. The dynamic acceleration response sensitivities with respect to the unknown structural damage indices and input force are derived analytically. Both unknown damage indices and unknown input force can be identified by minimizing the discrepancy between the measured and calculated vibration data. Numerical studies on a two‐dimensional truss and seven‐floor frame and experimental studies on a steel frame structure are presented to verify the accuracy and efficiency of the proposed method. Results demonstrate that the damage severity, location, and unknown input force can be identified. Also, the measurement at the force location is not required. Furthermore, when 20% measurement noise is considered, the identified error is less than 5%.\",\"PeriodicalId\":22049,\"journal\":{\"name\":\"Structural Control and Health Monitoring\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control and Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/stc.3132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control and Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stc.3132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An output‐only structural condition assessment method for civil structures by the stochastic gradient descent method
The interesting to assess the condition of a structure with structural health monitoring data has gained many attentions. Most of the existing methods require the measurement at the force location. This paper presents a novel output‐only condition assessment method that does not require measurement at the force location. The unknown structural damage indices and input force can be identified with the stochastic gradient descent method. The dynamic acceleration response sensitivities with respect to the unknown structural damage indices and input force are derived analytically. Both unknown damage indices and unknown input force can be identified by minimizing the discrepancy between the measured and calculated vibration data. Numerical studies on a two‐dimensional truss and seven‐floor frame and experimental studies on a steel frame structure are presented to verify the accuracy and efficiency of the proposed method. Results demonstrate that the damage severity, location, and unknown input force can be identified. Also, the measurement at the force location is not required. Furthermore, when 20% measurement noise is considered, the identified error is less than 5%.