改进Quora问题对数据集的问题相似度任务

H. T. Le, Dung T. Cao, Trung Bui, Long T. Luong, Huy-Quang Nguyen
{"title":"改进Quora问题对数据集的问题相似度任务","authors":"H. T. Le, Dung T. Cao, Trung Bui, Long T. Luong, Huy-Quang Nguyen","doi":"10.1109/RIVF51545.2021.9642071","DOIUrl":null,"url":null,"abstract":"Automatic detection of semantically equivalent questions is a task of the utmost importance in a question answering system. The Quora dataset, which was released in the Quora Question Pairs competition organized by Kaggle, has now been used by many researches to train the system in solving the task of identifying duplicate questions. However, the ground truth labels on this dataset are not 100% accurate and may include incorrect labeling. In this paper, we concentrate on improving the quality of the Quora dataset by combining several strategies, basing on Bert, rules, and reassigning labels by humans.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improve Quora Question Pair Dataset for Question Similarity Task\",\"authors\":\"H. T. Le, Dung T. Cao, Trung Bui, Long T. Luong, Huy-Quang Nguyen\",\"doi\":\"10.1109/RIVF51545.2021.9642071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of semantically equivalent questions is a task of the utmost importance in a question answering system. The Quora dataset, which was released in the Quora Question Pairs competition organized by Kaggle, has now been used by many researches to train the system in solving the task of identifying duplicate questions. However, the ground truth labels on this dataset are not 100% accurate and may include incorrect labeling. In this paper, we concentrate on improving the quality of the Quora dataset by combining several strategies, basing on Bert, rules, and reassigning labels by humans.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"19 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

语义等价问题的自动检测是问答系统中最重要的一项任务。在由Kaggle组织的Quora问题配对竞赛中发布的Quora数据集,现在已经被许多研究用来训练系统解决识别重复问题的任务。然而,这个数据集上的真实值标签不是100%准确的,可能包括不正确的标签。在本文中,我们专注于通过结合几种策略来提高Quora数据集的质量,这些策略基于Bert、规则和人类重新分配标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improve Quora Question Pair Dataset for Question Similarity Task
Automatic detection of semantically equivalent questions is a task of the utmost importance in a question answering system. The Quora dataset, which was released in the Quora Question Pairs competition organized by Kaggle, has now been used by many researches to train the system in solving the task of identifying duplicate questions. However, the ground truth labels on this dataset are not 100% accurate and may include incorrect labeling. In this paper, we concentrate on improving the quality of the Quora dataset by combining several strategies, basing on Bert, rules, and reassigning labels by humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1