{"title":"多项Logit模型的快速估计:R包","authors":"Asad Hasan, Wang Zhiyu, A. S. Mahani","doi":"10.18637/JSS.V075.I03","DOIUrl":null,"url":null,"abstract":"We present R package mnlogit for training multinomial logistic regression models, particularly those involving a large number of classes and features. Compared to existing software, mnlogit offers speedups of 10x-50x for modestly sized problems and more than 100x for larger problems. Running mnlogit in parallel mode on a multicore machine gives an additional 2x-4x speedup on up to 8 processor cores. Computational efficiency is achieved by drastically speeding up calculation of the log-likelihood function's Hessian matrix by exploiting structure in matrices that arise in intermediate calculations.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Fast Estimation of Multinomial Logit Models: R Package mnlogit\",\"authors\":\"Asad Hasan, Wang Zhiyu, A. S. Mahani\",\"doi\":\"10.18637/JSS.V075.I03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present R package mnlogit for training multinomial logistic regression models, particularly those involving a large number of classes and features. Compared to existing software, mnlogit offers speedups of 10x-50x for modestly sized problems and more than 100x for larger problems. Running mnlogit in parallel mode on a multicore machine gives an additional 2x-4x speedup on up to 8 processor cores. Computational efficiency is achieved by drastically speeding up calculation of the log-likelihood function's Hessian matrix by exploiting structure in matrices that arise in intermediate calculations.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V075.I03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V075.I03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Estimation of Multinomial Logit Models: R Package mnlogit
We present R package mnlogit for training multinomial logistic regression models, particularly those involving a large number of classes and features. Compared to existing software, mnlogit offers speedups of 10x-50x for modestly sized problems and more than 100x for larger problems. Running mnlogit in parallel mode on a multicore machine gives an additional 2x-4x speedup on up to 8 processor cores. Computational efficiency is achieved by drastically speeding up calculation of the log-likelihood function's Hessian matrix by exploiting structure in matrices that arise in intermediate calculations.