血管内皮生长因子在腹膜透析:纵向随访。

M. M. Zweers, D. Struijk, W. Smit, R. Krediet
{"title":"血管内皮生长因子在腹膜透析:纵向随访。","authors":"M. M. Zweers, D. Struijk, W. Smit, R. Krediet","doi":"10.1067/MLC.2001.112235","DOIUrl":null,"url":null,"abstract":"In a previous study, vascular endothelial growth factor (VEGF) was found to be locally produced in the peritoneal tissue of patients undergoing peritoneal dialysis (PD) who were being treated with glucose-containing PD solutions. Locally produced VEGF (LVEGF) was positively related to the mass transfer area coefficient (MTAC) of creatinine and to glucose absorption, both of which are representative of the peritoneal vascular surface area. It was therefore hypothesized that VEGF is involved in the peritoneal neoangiogenesis found in long-term PD. The aim of the present study was to investigate the time course of peritoneal VEGF levels in PD patients treated with glucose-based PD solutions during longitudinal follow-up. We also studied the effect of the switch to glucose-free PD treatment on VEGF production. Forty standard peritoneal permeability analyses (SPAs) with 3.86% glucose-containing dialysis solution were investigated. The SPAs were performed in 10 PD patients with a median number of three SPAs per patient during a follow-up of 23 months. Duration of PD treatment at the last SPA was 74 months. All patients were initially treated with glucose-containing dialysis solutions. Four patients switched after 114 months of glucose-based PD to glucose-free PD and were followed for 7 months. A PD regimen of icodextrin, glycerol, and amino acid-based dialysis solutions was applied in these patients. Four SPAs were performed per patient in this period. To predict the VEGF dialysate-to-serum ratio (D/S), when diffusion would be the only explanation for the VEGF dialysate concentration, we calculated the power relationship between D/S ratios of serum proteins that are only transported across the peritoneum and the molecular weights of those proteins. The measured VEGF D/S ratio was higher than expected (P <.001) in each observation, pointing to local production of VEGF. LVEGF increased with duration of glucose PD, 11.7 ng/L to 23.45 ng/L (P <.03). LVEGF decreased in all 4 patients undergoing glucose-free PD, from 57.35 ng/L to 23.10 ng/L. A correlation (r = 0.83, P <.001) was found be-tween the differences in MTAC creatinine between the first and last SPA during glucose-based PD and the difference in LVEGF between these observations. A similar correlation was present between the difference in glucose absorption and the difference in LVEGF (r = 0.85, P <.001). This supports a pathogenetic role of high glucose dialysate concentrations in the development of changes in the peritoneum that are found in long-term PD. Treatment with non-glucose-based PD solutions may inhibit further development of these alterations.","PeriodicalId":23085,"journal":{"name":"The Journal of laboratory and clinical medicine","volume":"16 1","pages":"125-32"},"PeriodicalIF":0.0000,"publicationDate":"2001-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-up.\",\"authors\":\"M. M. Zweers, D. Struijk, W. Smit, R. Krediet\",\"doi\":\"10.1067/MLC.2001.112235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous study, vascular endothelial growth factor (VEGF) was found to be locally produced in the peritoneal tissue of patients undergoing peritoneal dialysis (PD) who were being treated with glucose-containing PD solutions. Locally produced VEGF (LVEGF) was positively related to the mass transfer area coefficient (MTAC) of creatinine and to glucose absorption, both of which are representative of the peritoneal vascular surface area. It was therefore hypothesized that VEGF is involved in the peritoneal neoangiogenesis found in long-term PD. The aim of the present study was to investigate the time course of peritoneal VEGF levels in PD patients treated with glucose-based PD solutions during longitudinal follow-up. We also studied the effect of the switch to glucose-free PD treatment on VEGF production. Forty standard peritoneal permeability analyses (SPAs) with 3.86% glucose-containing dialysis solution were investigated. The SPAs were performed in 10 PD patients with a median number of three SPAs per patient during a follow-up of 23 months. Duration of PD treatment at the last SPA was 74 months. All patients were initially treated with glucose-containing dialysis solutions. Four patients switched after 114 months of glucose-based PD to glucose-free PD and were followed for 7 months. A PD regimen of icodextrin, glycerol, and amino acid-based dialysis solutions was applied in these patients. Four SPAs were performed per patient in this period. To predict the VEGF dialysate-to-serum ratio (D/S), when diffusion would be the only explanation for the VEGF dialysate concentration, we calculated the power relationship between D/S ratios of serum proteins that are only transported across the peritoneum and the molecular weights of those proteins. The measured VEGF D/S ratio was higher than expected (P <.001) in each observation, pointing to local production of VEGF. LVEGF increased with duration of glucose PD, 11.7 ng/L to 23.45 ng/L (P <.03). LVEGF decreased in all 4 patients undergoing glucose-free PD, from 57.35 ng/L to 23.10 ng/L. A correlation (r = 0.83, P <.001) was found be-tween the differences in MTAC creatinine between the first and last SPA during glucose-based PD and the difference in LVEGF between these observations. A similar correlation was present between the difference in glucose absorption and the difference in LVEGF (r = 0.85, P <.001). This supports a pathogenetic role of high glucose dialysate concentrations in the development of changes in the peritoneum that are found in long-term PD. Treatment with non-glucose-based PD solutions may inhibit further development of these alterations.\",\"PeriodicalId\":23085,\"journal\":{\"name\":\"The Journal of laboratory and clinical medicine\",\"volume\":\"16 1\",\"pages\":\"125-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of laboratory and clinical medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1067/MLC.2001.112235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of laboratory and clinical medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1067/MLC.2001.112235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

摘要

在之前的一项研究中,血管内皮生长因子(VEGF)被发现在接受含葡萄糖的腹膜透析(PD)患者的腹膜组织中局部产生。局部生成的VEGF (LVEGF)与肌酐的传质面积系数(MTAC)和葡萄糖吸收呈正相关,两者均代表腹膜血管表面积。因此,我们假设VEGF参与了长期PD患者腹膜新生血管生成。本研究的目的是在纵向随访期间调查葡萄糖基PD溶液治疗的PD患者腹膜VEGF水平的时间过程。我们还研究了切换到无葡萄糖PD治疗对VEGF产生的影响。采用含3.86%葡萄糖的透析液进行40例标准腹膜通透性分析(spa)。在23个月的随访期间,对10例PD患者进行了spa,每位患者中位数为3次spa。最后一次SPA PD治疗持续时间为74个月。所有患者最初都用含葡萄糖的透析液治疗。4名患者在114个月的葡萄糖基PD治疗后转为无葡萄糖PD治疗,随访7个月。在这些患者中应用了以碘糊精、甘油和氨基酸为基础的透析溶液的PD方案。在此期间,每位患者进行了4次spa。当扩散是VEGF透析液浓度的唯一解释时,为了预测VEGF透析液与血清的比率(D/S),我们计算了仅通过腹膜运输的血清蛋白的D/S比率与这些蛋白的分子量之间的幂关系。在每次观察中,测量到的VEGF D/S比均高于预期(P < 0.001),表明VEGF在局部产生。LVEGF随葡萄糖PD持续时间增加,从11.7 ng/L增加至23.45 ng/L (P < 0.05)。4例无糖PD患者LVEGF均下降,从57.35 ng/L降至23.10 ng/L。在第一次和最后一次SPA中MTAC肌酐的差异与LVEGF的差异之间存在相关性(r = 0.83, P < 0.001)。葡萄糖吸收差异与LVEGF差异之间存在类似的相关性(r = 0.85, P < 0.001)。这支持了高葡萄糖透析液浓度在腹膜变化发展中的病理作用,这种变化在长期PD中发现。用非葡萄糖基PD溶液治疗可能会抑制这些改变的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-up.
In a previous study, vascular endothelial growth factor (VEGF) was found to be locally produced in the peritoneal tissue of patients undergoing peritoneal dialysis (PD) who were being treated with glucose-containing PD solutions. Locally produced VEGF (LVEGF) was positively related to the mass transfer area coefficient (MTAC) of creatinine and to glucose absorption, both of which are representative of the peritoneal vascular surface area. It was therefore hypothesized that VEGF is involved in the peritoneal neoangiogenesis found in long-term PD. The aim of the present study was to investigate the time course of peritoneal VEGF levels in PD patients treated with glucose-based PD solutions during longitudinal follow-up. We also studied the effect of the switch to glucose-free PD treatment on VEGF production. Forty standard peritoneal permeability analyses (SPAs) with 3.86% glucose-containing dialysis solution were investigated. The SPAs were performed in 10 PD patients with a median number of three SPAs per patient during a follow-up of 23 months. Duration of PD treatment at the last SPA was 74 months. All patients were initially treated with glucose-containing dialysis solutions. Four patients switched after 114 months of glucose-based PD to glucose-free PD and were followed for 7 months. A PD regimen of icodextrin, glycerol, and amino acid-based dialysis solutions was applied in these patients. Four SPAs were performed per patient in this period. To predict the VEGF dialysate-to-serum ratio (D/S), when diffusion would be the only explanation for the VEGF dialysate concentration, we calculated the power relationship between D/S ratios of serum proteins that are only transported across the peritoneum and the molecular weights of those proteins. The measured VEGF D/S ratio was higher than expected (P <.001) in each observation, pointing to local production of VEGF. LVEGF increased with duration of glucose PD, 11.7 ng/L to 23.45 ng/L (P <.03). LVEGF decreased in all 4 patients undergoing glucose-free PD, from 57.35 ng/L to 23.10 ng/L. A correlation (r = 0.83, P <.001) was found be-tween the differences in MTAC creatinine between the first and last SPA during glucose-based PD and the difference in LVEGF between these observations. A similar correlation was present between the difference in glucose absorption and the difference in LVEGF (r = 0.85, P <.001). This supports a pathogenetic role of high glucose dialysate concentrations in the development of changes in the peritoneum that are found in long-term PD. Treatment with non-glucose-based PD solutions may inhibit further development of these alterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prometheus. Foie gras. Gene expression in giant-cell tumors. The lighthouse at Coxsackie, New York. Mechanisms of platelet retention in the collagen-coated-bead column.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1