等离子体解调用玻璃基板金条薄膜的制备

W. M. Mukhtar, S. Shaari, P. Menon, H. Razak
{"title":"等离子体解调用玻璃基板金条薄膜的制备","authors":"W. M. Mukhtar, S. Shaari, P. Menon, H. Razak","doi":"10.1109/RSM.2015.7355027","DOIUrl":null,"url":null,"abstract":"Plasmonic demodulation is a process where an optical signal due to the generation of surface plasmon polaritons (SPP) reacts with electrical domain, resulted an inverse relationship between them. In this study, fabrication processes of gold strip thin films on the glass substrates are presented. For an optimization purpose of electro-optics effect observation, the width of gold strip thin film is set as 0.5mm, which is equal to the laser beam spot diameter. First, the strip pattern is printed on a commercial transparent plastic slide. The pattern transfer process from plastic slide to glass slide is performed using UV light. Once the pattern is formed on the glass substrate, gold thin film with varies thicknesses namely 30nm, 50nm and 100nm are deposited by monitoring the sputtering time; via d.c. sputtering on the glass substrate which is partly coated with the positive photoresist. The photoresist is removed by immersing the coated glass slide in acetone solution for 15 minutes, follow with DI water for three seconds in an ultrasonic bath. This yields to the establishment of gold strip thin films with dimension of width 0.5mm × length 10mm. An optimal plasmonic demodulation process is successfully acquired by using gold metal strip with thickness of 30nm and higher laser power level, namely P=1.5mW. In a conclusion, we believe that the output of this study will contribute a significant impact to the development of the plasmonic demodulator as an active device.","PeriodicalId":6667,"journal":{"name":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of gold strip thin film on glass substrate for plasmonic demodulation application\",\"authors\":\"W. M. Mukhtar, S. Shaari, P. Menon, H. Razak\",\"doi\":\"10.1109/RSM.2015.7355027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasmonic demodulation is a process where an optical signal due to the generation of surface plasmon polaritons (SPP) reacts with electrical domain, resulted an inverse relationship between them. In this study, fabrication processes of gold strip thin films on the glass substrates are presented. For an optimization purpose of electro-optics effect observation, the width of gold strip thin film is set as 0.5mm, which is equal to the laser beam spot diameter. First, the strip pattern is printed on a commercial transparent plastic slide. The pattern transfer process from plastic slide to glass slide is performed using UV light. Once the pattern is formed on the glass substrate, gold thin film with varies thicknesses namely 30nm, 50nm and 100nm are deposited by monitoring the sputtering time; via d.c. sputtering on the glass substrate which is partly coated with the positive photoresist. The photoresist is removed by immersing the coated glass slide in acetone solution for 15 minutes, follow with DI water for three seconds in an ultrasonic bath. This yields to the establishment of gold strip thin films with dimension of width 0.5mm × length 10mm. An optimal plasmonic demodulation process is successfully acquired by using gold metal strip with thickness of 30nm and higher laser power level, namely P=1.5mW. In a conclusion, we believe that the output of this study will contribute a significant impact to the development of the plasmonic demodulator as an active device.\",\"PeriodicalId\":6667,\"journal\":{\"name\":\"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"volume\":\"14 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2015.7355027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2015.7355027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

等离子体解调是由于表面等离子体激元(SPP)的产生而引起的光信号与电畴发生反比反应的过程。本文介绍了在玻璃基板上制备金条薄膜的工艺。为了优化电光效应观测,设置金条薄膜的宽度为0.5mm,等于激光束光斑直径。首先,将条形图案印在商业透明塑料幻灯片上。从塑料载玻片到玻璃载玻片的图案转移过程是使用紫外光进行的。在玻璃基板上形成图案后,通过监测溅射时间沉积30nm、50nm、100nm不同厚度的金薄膜;通过直流溅射在部分涂有正极光刻胶的玻璃基板上。将涂有涂层的玻片浸泡在丙酮溶液中15分钟,然后用去离子水在超声波浴中浸泡3秒钟,即可去除光刻胶。从而制备出宽0.5mm ×长10mm尺寸的金条薄膜。采用厚度为30nm的金金属带,采用更高的激光功率(P=1.5mW),成功获得了最优的等离子体解调工艺。总之,我们相信本研究的成果将对等离子体解调器作为有源器件的发展产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of gold strip thin film on glass substrate for plasmonic demodulation application
Plasmonic demodulation is a process where an optical signal due to the generation of surface plasmon polaritons (SPP) reacts with electrical domain, resulted an inverse relationship between them. In this study, fabrication processes of gold strip thin films on the glass substrates are presented. For an optimization purpose of electro-optics effect observation, the width of gold strip thin film is set as 0.5mm, which is equal to the laser beam spot diameter. First, the strip pattern is printed on a commercial transparent plastic slide. The pattern transfer process from plastic slide to glass slide is performed using UV light. Once the pattern is formed on the glass substrate, gold thin film with varies thicknesses namely 30nm, 50nm and 100nm are deposited by monitoring the sputtering time; via d.c. sputtering on the glass substrate which is partly coated with the positive photoresist. The photoresist is removed by immersing the coated glass slide in acetone solution for 15 minutes, follow with DI water for three seconds in an ultrasonic bath. This yields to the establishment of gold strip thin films with dimension of width 0.5mm × length 10mm. An optimal plasmonic demodulation process is successfully acquired by using gold metal strip with thickness of 30nm and higher laser power level, namely P=1.5mW. In a conclusion, we believe that the output of this study will contribute a significant impact to the development of the plasmonic demodulator as an active device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation on Optical Interconnect(OI) link performance using external modulator Modeling and simulation of polysilicon piezoresistors in a CMOS-MEMS resonator for mass detection FPGA-based hardware-in-the-loop verification of dual-stage HDD head position control A comparative study of photocurable sensing membrane for Potassium ChemFET sensor The vertical strained impact ionization MOSFET (VESIMOS) for ultra-sensitive biosensor application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1