一种利用GNSS接收机中耦合幅度延迟锁环的创新多径缓解方法

Xin Chen, F. Dovis, M. Pini
{"title":"一种利用GNSS接收机中耦合幅度延迟锁环的创新多径缓解方法","authors":"Xin Chen, F. Dovis, M. Pini","doi":"10.1109/PLANS.2010.5507230","DOIUrl":null,"url":null,"abstract":"In this paper a novel multipath mitigation architecture for satellite navigation receiver, named Coupled Amplitude Delay Lock Loops (CADLL) is presented. This architecture exploits the “turbo principle” to separately track the Line Of Sight (LOS) signal and multipath signals in order to mitigate the effects of the multiple reflections. The Delay Lock Loop (DLL) and the Amplitude Lock Loop (ALL) are two basic elements in the structure. DLL is in charge of estimating and tracking the code delay of a specific ray in the incoming signal while ALL is in charge of estimating the corresponding amplitude. A pair of DLL and ALL makes a Unit, devoted to track LOS or a multipath signal. Several Units are incorporated in the CADLL structure, that is then able to track the different component rays from the overall incoming signal, and wiping them off from the received signal. The feedback architecture of the CADLL boosts the performance of the estimation and wipe-off process. CADLL is shown to have good performance in terms of accuracy of estimating and tracking LOS and multipath as well as the robustness to cope with severe multipath scenario.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"11 1","pages":"1118-1126"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An innovative multipath mitigation method using coupled amplitude delay lock loops in GNSS receivers\",\"authors\":\"Xin Chen, F. Dovis, M. Pini\",\"doi\":\"10.1109/PLANS.2010.5507230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel multipath mitigation architecture for satellite navigation receiver, named Coupled Amplitude Delay Lock Loops (CADLL) is presented. This architecture exploits the “turbo principle” to separately track the Line Of Sight (LOS) signal and multipath signals in order to mitigate the effects of the multiple reflections. The Delay Lock Loop (DLL) and the Amplitude Lock Loop (ALL) are two basic elements in the structure. DLL is in charge of estimating and tracking the code delay of a specific ray in the incoming signal while ALL is in charge of estimating the corresponding amplitude. A pair of DLL and ALL makes a Unit, devoted to track LOS or a multipath signal. Several Units are incorporated in the CADLL structure, that is then able to track the different component rays from the overall incoming signal, and wiping them off from the received signal. The feedback architecture of the CADLL boosts the performance of the estimation and wipe-off process. CADLL is shown to have good performance in terms of accuracy of estimating and tracking LOS and multipath as well as the robustness to cope with severe multipath scenario.\",\"PeriodicalId\":94036,\"journal\":{\"name\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"volume\":\"11 1\",\"pages\":\"1118-1126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2010.5507230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2010.5507230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种新的卫星导航接收机多径抑制结构——耦合幅度延迟锁环(CADLL)。该架构利用“涡轮原理”分别跟踪视线(LOS)信号和多径信号,以减轻多重反射的影响。延迟锁环(DLL)和幅度锁环(ALL)是该结构中的两个基本元素。DLL负责估计和跟踪输入信号中特定射线的码延迟,ALL负责估计相应的幅度。一对DLL和ALL组成一个单元,专门用于跟踪LOS或多径信号。CADLL结构中包含了几个单元,这样就能够跟踪来自整体输入信号的不同分量射线,并将它们从接收信号中清除。CADLL的反馈结构提高了估计和擦除过程的性能。CADLL算法在LOS和多路径的估计和跟踪精度以及对严重多路径场景的鲁棒性方面都具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An innovative multipath mitigation method using coupled amplitude delay lock loops in GNSS receivers
In this paper a novel multipath mitigation architecture for satellite navigation receiver, named Coupled Amplitude Delay Lock Loops (CADLL) is presented. This architecture exploits the “turbo principle” to separately track the Line Of Sight (LOS) signal and multipath signals in order to mitigate the effects of the multiple reflections. The Delay Lock Loop (DLL) and the Amplitude Lock Loop (ALL) are two basic elements in the structure. DLL is in charge of estimating and tracking the code delay of a specific ray in the incoming signal while ALL is in charge of estimating the corresponding amplitude. A pair of DLL and ALL makes a Unit, devoted to track LOS or a multipath signal. Several Units are incorporated in the CADLL structure, that is then able to track the different component rays from the overall incoming signal, and wiping them off from the received signal. The feedback architecture of the CADLL boosts the performance of the estimation and wipe-off process. CADLL is shown to have good performance in terms of accuracy of estimating and tracking LOS and multipath as well as the robustness to cope with severe multipath scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative Multicarrier Broadband Waveforms for Future GNSS Applications - A System Overview Inertial Navigation on Extremely Resource-Constrained Platforms: Methods, Opportunities and Challenges. Doppler Processing for Satellite Navigation Q-Learning Model Covariance Adaptation of Rao-Blackwellized Particle Filtering in Airborne Geomagnetic Navigation Research on multi-model adaptive hull deformation measurement algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1