{"title":"塑性变形对321N奥氏体钢(08Kh18N10T)相组成及电磁特性的影响","authors":"L. Goruleva, S. M. Zadvorkin, A. N. Mushnikov","doi":"10.17804/2410-9908.2022.6.095-106","DOIUrl":null,"url":null,"abstract":"The changes in the phase composition and electromagnetic properties of the 321N chromium-nickel austenitic steel under plastic deformation by uniaxial tension are studied. As strain increases from 0 to 0.37, the content of ferromagnetic α′-martensite in the steel increases monotonically to 60%. The electrical resistivity and the initial magnetic permeability increase monotonically by factors of 1,25 and 18, respectively. To monitor the strain state and the content of α'-martensite in products made of the 321N steel, it is preferable to use initial magnetic permeability rather than electrical resistance. The skin layer thickness of the deformed 321N steel for frequencies from 5 to 1000 kHz is calculated from the experimental values of initial magnetic permeability and electrical resistivity. Eddy current diagnostics of the state of the surface of products made of this steel, hardened by surface plastic deformation, is proposed to be performed at frequencies ranging between 100 and 200 kHz.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of plastic deformation on the phase composition and electromagnetic characteristics of the 321N austenitic steel (08Kh18N10T)\",\"authors\":\"L. Goruleva, S. M. Zadvorkin, A. N. Mushnikov\",\"doi\":\"10.17804/2410-9908.2022.6.095-106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The changes in the phase composition and electromagnetic properties of the 321N chromium-nickel austenitic steel under plastic deformation by uniaxial tension are studied. As strain increases from 0 to 0.37, the content of ferromagnetic α′-martensite in the steel increases monotonically to 60%. The electrical resistivity and the initial magnetic permeability increase monotonically by factors of 1,25 and 18, respectively. To monitor the strain state and the content of α'-martensite in products made of the 321N steel, it is preferable to use initial magnetic permeability rather than electrical resistance. The skin layer thickness of the deformed 321N steel for frequencies from 5 to 1000 kHz is calculated from the experimental values of initial magnetic permeability and electrical resistivity. Eddy current diagnostics of the state of the surface of products made of this steel, hardened by surface plastic deformation, is proposed to be performed at frequencies ranging between 100 and 200 kHz.\",\"PeriodicalId\":11165,\"journal\":{\"name\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17804/2410-9908.2022.6.095-106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2022.6.095-106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of plastic deformation on the phase composition and electromagnetic characteristics of the 321N austenitic steel (08Kh18N10T)
The changes in the phase composition and electromagnetic properties of the 321N chromium-nickel austenitic steel under plastic deformation by uniaxial tension are studied. As strain increases from 0 to 0.37, the content of ferromagnetic α′-martensite in the steel increases monotonically to 60%. The electrical resistivity and the initial magnetic permeability increase monotonically by factors of 1,25 and 18, respectively. To monitor the strain state and the content of α'-martensite in products made of the 321N steel, it is preferable to use initial magnetic permeability rather than electrical resistance. The skin layer thickness of the deformed 321N steel for frequencies from 5 to 1000 kHz is calculated from the experimental values of initial magnetic permeability and electrical resistivity. Eddy current diagnostics of the state of the surface of products made of this steel, hardened by surface plastic deformation, is proposed to be performed at frequencies ranging between 100 and 200 kHz.