{"title":"激光烧结功能梯度材料","authors":"J. D. Hu, S. Tosto, Z. Guo, C. S. Wang","doi":"10.1080/0898150021000054520","DOIUrl":null,"url":null,"abstract":"This article concerns functionally gradient materials (FGM) realized by laser sintering. Layers of Fe rich and Cu rich powders were compacted first and then laser sintered to obtain multilayer samples with smooth composition gradients. Microanalysis profiles on the cross sections of sintered samples show gradual increasing of Cu content and decreasing of Fe content. The laser sintered FGM contain several phases such as free graphite, ferrite, pearlite, Cu-Ni solid solutions, austenite, f -Cu phase, i -phase (Cu 31 Sn 8 ), k -phase (Cu 3 Sn) as well as m -phase (Cu 6 Sn 5 ). The experimental results show good wear resistance and toughness properties of the laser sintered FGMs.","PeriodicalId":49918,"journal":{"name":"Lasers in Engineering","volume":"341 1","pages":"239-245"},"PeriodicalIF":0.6000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FUNCTIONALLY GRADED MATERIALS BY LASER SINTERING\",\"authors\":\"J. D. Hu, S. Tosto, Z. Guo, C. S. Wang\",\"doi\":\"10.1080/0898150021000054520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article concerns functionally gradient materials (FGM) realized by laser sintering. Layers of Fe rich and Cu rich powders were compacted first and then laser sintered to obtain multilayer samples with smooth composition gradients. Microanalysis profiles on the cross sections of sintered samples show gradual increasing of Cu content and decreasing of Fe content. The laser sintered FGM contain several phases such as free graphite, ferrite, pearlite, Cu-Ni solid solutions, austenite, f -Cu phase, i -phase (Cu 31 Sn 8 ), k -phase (Cu 3 Sn) as well as m -phase (Cu 6 Sn 5 ). The experimental results show good wear resistance and toughness properties of the laser sintered FGMs.\",\"PeriodicalId\":49918,\"journal\":{\"name\":\"Lasers in Engineering\",\"volume\":\"341 1\",\"pages\":\"239-245\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/0898150021000054520\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/0898150021000054520","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
摘要
研究了用激光烧结技术制备功能梯度材料。首先对富铁和富铜粉末进行压实,然后进行激光烧结,得到具有光滑成分梯度的多层样品。烧结试样截面上的微量分析曲线显示Cu含量逐渐增加,Fe含量逐渐减少。激光烧结FGM含有游离石墨、铁素体、珠光体、Cu- ni固溶体、奥氏体、f -Cu相、i相(Cu 31 Sn 8)、k相(Cu 3 Sn)和m相(Cu 6 Sn 5)等多种相。实验结果表明,激光烧结fgm具有良好的耐磨性和韧性。
This article concerns functionally gradient materials (FGM) realized by laser sintering. Layers of Fe rich and Cu rich powders were compacted first and then laser sintered to obtain multilayer samples with smooth composition gradients. Microanalysis profiles on the cross sections of sintered samples show gradual increasing of Cu content and decreasing of Fe content. The laser sintered FGM contain several phases such as free graphite, ferrite, pearlite, Cu-Ni solid solutions, austenite, f -Cu phase, i -phase (Cu 31 Sn 8 ), k -phase (Cu 3 Sn) as well as m -phase (Cu 6 Sn 5 ). The experimental results show good wear resistance and toughness properties of the laser sintered FGMs.
期刊介绍:
Lasers in Engineering publishes original (primary) research articles, reviews, short communications and letters on all aspects relating to the application of lasers in the many different branches of engineering and related disciplines.
The topics covered by Lasers in Engineering are the use of lasers: in sensors or measuring and for mapping devices; in electrocomponent fabrication; for materials processing; as integral parts of production assemblies; within the fields of biotechnology and bioengineering; in micro- and nanofabrication; as well as the materials and processing aspects of techniques such as cutting, drilling, marking, cladding, additive manufacturing (AM), alloying, welding and surface treatment and engineering.
Lasers in Engineering presents a balanced account of future developments, fundamental aspects and industrial innovations driven by the deployment of lasers. Modern technology has a vitally important role to play in meeting the increasingly stringent demands made on material and production systems. Lasers in Engineering provides a readily accessible medium for the rapid reporting of new knowledge, and technological and scientific advances in these areas.