{"title":"基于图的XACML计算","authors":"Santiago Pina Ros, Mario Lischka, Félix Gómez Mármol","doi":"10.1145/2295136.2295153","DOIUrl":null,"url":null,"abstract":"The amount of private information in the Internet is constantly increasing with the explosive growth of cloud computing and social networks. XACML is one of the most important standards for specifying access control policies for web services. The number of XACML policies grows really fast and evaluation processing time becomes longer. The XEngine approach proposes to rearrange the matching tree according to the attributes used in the target sections, but for speed reasons they only support equality of attribute values. For a fast termination the combining algorithms are transformed into a first applicable policy, which does not support obligations correctly.\n In our approach all comparison functions defined in XACML as well as obligations are supported. In this paper we propose an optimization for XACML policies evaluation based on two tree structures. The first one, called Matching Tree, is created for a fast searching of applicable rules. The second one, called Combining Tree, is used for the evaluation of the applicable rules. Finally, we propose an exploring method for the Matching Tree based on the binary search algorithm. The experimental results show that our approach is orders of magnitude better than Sun PDP.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"5 1","pages":"83-92"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Graph-based XACML evaluation\",\"authors\":\"Santiago Pina Ros, Mario Lischka, Félix Gómez Mármol\",\"doi\":\"10.1145/2295136.2295153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of private information in the Internet is constantly increasing with the explosive growth of cloud computing and social networks. XACML is one of the most important standards for specifying access control policies for web services. The number of XACML policies grows really fast and evaluation processing time becomes longer. The XEngine approach proposes to rearrange the matching tree according to the attributes used in the target sections, but for speed reasons they only support equality of attribute values. For a fast termination the combining algorithms are transformed into a first applicable policy, which does not support obligations correctly.\\n In our approach all comparison functions defined in XACML as well as obligations are supported. In this paper we propose an optimization for XACML policies evaluation based on two tree structures. The first one, called Matching Tree, is created for a fast searching of applicable rules. The second one, called Combining Tree, is used for the evaluation of the applicable rules. Finally, we propose an exploring method for the Matching Tree based on the binary search algorithm. The experimental results show that our approach is orders of magnitude better than Sun PDP.\",\"PeriodicalId\":74509,\"journal\":{\"name\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"volume\":\"5 1\",\"pages\":\"83-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2295136.2295153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2295136.2295153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

随着云计算和社交网络的爆炸式增长,互联网上的私人信息数量不断增加。XACML是为web服务指定访问控制策略的最重要标准之一。XACML策略的数量增长非常快,评估处理时间变得更长。XEngine方法建议根据目标部分中使用的属性重新排列匹配树,但出于速度原因,它们只支持属性值相等。为了快速终止,将组合算法转换为第一适用策略,该策略不正确地支持义务。在我们的方法中,支持XACML中定义的所有比较函数以及义务。本文提出了一种基于两树结构的XACML策略评估优化方法。第一个称为匹配树(Matching Tree),是为快速搜索适用规则而创建的。第二个称为组合树,用于评估适用的规则。最后,提出了一种基于二叉搜索算法的匹配树探索方法。实验结果表明,我们的方法比Sun PDP算法好几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-based XACML evaluation
The amount of private information in the Internet is constantly increasing with the explosive growth of cloud computing and social networks. XACML is one of the most important standards for specifying access control policies for web services. The number of XACML policies grows really fast and evaluation processing time becomes longer. The XEngine approach proposes to rearrange the matching tree according to the attributes used in the target sections, but for speed reasons they only support equality of attribute values. For a fast termination the combining algorithms are transformed into a first applicable policy, which does not support obligations correctly. In our approach all comparison functions defined in XACML as well as obligations are supported. In this paper we propose an optimization for XACML policies evaluation based on two tree structures. The first one, called Matching Tree, is created for a fast searching of applicable rules. The second one, called Combining Tree, is used for the evaluation of the applicable rules. Finally, we propose an exploring method for the Matching Tree based on the binary search algorithm. The experimental results show that our approach is orders of magnitude better than Sun PDP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sidecar-based Path-aware Security for Microservices Poster: How to Raise a Robot - Beyond Access Control Constraints in Assistive Humanoid Robots Demo: A Multimodal Behavioral Biometric Scheme for Smartphone User Authentication (MBBS) Qualitative Intention-aware Attribute-based Access Control Policy Refinement SpaceMediator: Leveraging Authorization Policies to Prevent Spatial and Privacy Attacks in Mobile Augmented Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1