Juan J. Campos Manzo, Nicole J. Wagner, K. Anderson
{"title":"电弧射流喷雾器多物理场建模与仿真","authors":"Juan J. Campos Manzo, Nicole J. Wagner, K. Anderson","doi":"10.1115/fedsm2021-65319","DOIUrl":null,"url":null,"abstract":"\n Twin wire arc spraying (TWAS) is a plasma spraying process that offers low workpiece heating and high deposition rates at a lower cost. Variations in TWAS process conditions cause the substrate temperature to fluctuate and even melt. Therefore, the motivation of this project was to simulate the heat transfer from the TWAS torch to the substrate during spraying and layer formation of a coating. Simulations using ANSYS FLUENT Computational Fluid Dynamics (CFD) software were used to model the heat transfer in a TWAS system. The results of this paper are meant to augment and improve the database of TWAS technology. A CFD numerical heat transfer model is presented that was used to investigate the substrate surface temperature during the TWAS process. The results for the different pressure models showed that for a 3 second simulation, substrate surface temperatures increased as nozzle inlet pressure was decreased. For the upper and lower bound pressures of 75 psia and 29 psia, substrate surface temperature resulted in 946 °C and 1010 °C, respectively.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphysics Modeling and Simulation of an Arc-Jet Sprayer\",\"authors\":\"Juan J. Campos Manzo, Nicole J. Wagner, K. Anderson\",\"doi\":\"10.1115/fedsm2021-65319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Twin wire arc spraying (TWAS) is a plasma spraying process that offers low workpiece heating and high deposition rates at a lower cost. Variations in TWAS process conditions cause the substrate temperature to fluctuate and even melt. Therefore, the motivation of this project was to simulate the heat transfer from the TWAS torch to the substrate during spraying and layer formation of a coating. Simulations using ANSYS FLUENT Computational Fluid Dynamics (CFD) software were used to model the heat transfer in a TWAS system. The results of this paper are meant to augment and improve the database of TWAS technology. A CFD numerical heat transfer model is presented that was used to investigate the substrate surface temperature during the TWAS process. The results for the different pressure models showed that for a 3 second simulation, substrate surface temperatures increased as nozzle inlet pressure was decreased. For the upper and lower bound pressures of 75 psia and 29 psia, substrate surface temperature resulted in 946 °C and 1010 °C, respectively.\",\"PeriodicalId\":23636,\"journal\":{\"name\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2021-65319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiphysics Modeling and Simulation of an Arc-Jet Sprayer
Twin wire arc spraying (TWAS) is a plasma spraying process that offers low workpiece heating and high deposition rates at a lower cost. Variations in TWAS process conditions cause the substrate temperature to fluctuate and even melt. Therefore, the motivation of this project was to simulate the heat transfer from the TWAS torch to the substrate during spraying and layer formation of a coating. Simulations using ANSYS FLUENT Computational Fluid Dynamics (CFD) software were used to model the heat transfer in a TWAS system. The results of this paper are meant to augment and improve the database of TWAS technology. A CFD numerical heat transfer model is presented that was used to investigate the substrate surface temperature during the TWAS process. The results for the different pressure models showed that for a 3 second simulation, substrate surface temperatures increased as nozzle inlet pressure was decreased. For the upper and lower bound pressures of 75 psia and 29 psia, substrate surface temperature resulted in 946 °C and 1010 °C, respectively.