{"title":"用显隐混合有限元法分析超厚钢管的缺陷","authors":"Yong-Zheng Jiang, Ya-Fan Hu, Z. Fu, Shengqing Zhu","doi":"10.1051/metal/2021101","DOIUrl":null,"url":null,"abstract":"The ultra-thick wall steel pipes are very likely to have quality defects in stretch-reduction hot rolling process, and it is preferred to study these defects by simulation methods. However, traditional FEM often has the problems of convergency difficulty and time consuming for solving complex large deformation problems. Therefore, in this study, a mixed explicit-implicit FEM, was adopted for solving the thermo-mechanical coupled process of the stretch-reduction hot rolling. Multidimensional heat transfer as well as mechanical boundary conditions were acted simultaneously, and the accuracy of the model was validated by industrial experiments. Results showed that the simulation results are very consistent with the actual rolling results. Three typical rolling defects were accurately predicted, i.e., inner hexagon, thickened ends and linear mark. Besides, it is discovered that the uneven distributions of stress, strain and temperature are important causes for the rolling defects, and these influences are also presented and discussed. This paper presents an efficient and precise numerical modelling method so as to provide theoretical guidance for the production of ultra-thick wall pipes.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"40 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defects analysis of the ultra-thick steel pipes using a mixed explicit–implicit FEM\",\"authors\":\"Yong-Zheng Jiang, Ya-Fan Hu, Z. Fu, Shengqing Zhu\",\"doi\":\"10.1051/metal/2021101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultra-thick wall steel pipes are very likely to have quality defects in stretch-reduction hot rolling process, and it is preferred to study these defects by simulation methods. However, traditional FEM often has the problems of convergency difficulty and time consuming for solving complex large deformation problems. Therefore, in this study, a mixed explicit-implicit FEM, was adopted for solving the thermo-mechanical coupled process of the stretch-reduction hot rolling. Multidimensional heat transfer as well as mechanical boundary conditions were acted simultaneously, and the accuracy of the model was validated by industrial experiments. Results showed that the simulation results are very consistent with the actual rolling results. Three typical rolling defects were accurately predicted, i.e., inner hexagon, thickened ends and linear mark. Besides, it is discovered that the uneven distributions of stress, strain and temperature are important causes for the rolling defects, and these influences are also presented and discussed. This paper presents an efficient and precise numerical modelling method so as to provide theoretical guidance for the production of ultra-thick wall pipes.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021101\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021101","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Defects analysis of the ultra-thick steel pipes using a mixed explicit–implicit FEM
The ultra-thick wall steel pipes are very likely to have quality defects in stretch-reduction hot rolling process, and it is preferred to study these defects by simulation methods. However, traditional FEM often has the problems of convergency difficulty and time consuming for solving complex large deformation problems. Therefore, in this study, a mixed explicit-implicit FEM, was adopted for solving the thermo-mechanical coupled process of the stretch-reduction hot rolling. Multidimensional heat transfer as well as mechanical boundary conditions were acted simultaneously, and the accuracy of the model was validated by industrial experiments. Results showed that the simulation results are very consistent with the actual rolling results. Three typical rolling defects were accurately predicted, i.e., inner hexagon, thickened ends and linear mark. Besides, it is discovered that the uneven distributions of stress, strain and temperature are important causes for the rolling defects, and these influences are also presented and discussed. This paper presents an efficient and precise numerical modelling method so as to provide theoretical guidance for the production of ultra-thick wall pipes.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.