磁性支架用于骨肿瘤热疗微波监测的可行性分析

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2023-07-03 DOI:10.1109/JERM.2023.3288741
Matteo Bruno Lodi;Nicola Curreli;Chiara Dachena;Alessandro Fedeli;Rosa Scapaticci;Andrea Randazzo;Matteo Pastorino;Alessandro Fanti
{"title":"磁性支架用于骨肿瘤热疗微波监测的可行性分析","authors":"Matteo Bruno Lodi;Nicola Curreli;Chiara Dachena;Alessandro Fedeli;Rosa Scapaticci;Andrea Randazzo;Matteo Pastorino;Alessandro Fanti","doi":"10.1109/JERM.2023.3288741","DOIUrl":null,"url":null,"abstract":"Magnetic biomaterials are multifunctional tools currently under investigation as theranostic platforms for biomedical applications. They can be implanted in bone tissue after bone cancer resection to perform local interstitial hyperthermia treatment. Given the requirements of high quality treatment, the hyperthermia therapy should be performed monitoring the system temperature, to avoid hot spots and control the treatment outcome. It is known that the magnetic properties of such implants vary with temperature. It is hypotesized that the treatment dynamic could be monitored using a microwave monitoring system. The variation of the electromagnetic properties of the biological tissues and the magnetic implant during the therapy would result in a different propagation of the microwave signal. This work investigates the feasibility of using microwaves to non-invasively monitor hyperthermia treatments with a simplified monodimensional propagation model. The forward problem is solved to identify the working frequencies, the matching medium properties and study several candidate materials. By using the numerical solutions from nonlinear and multiphysics simulations of the bone tumor hyperthermia treatment using magnetic scaffolds, the microwave signal propagation dynamic is studied. From our feasibility analysis, we found that it is possible to correlate the average tumor temperature with significant (\n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n20 dB) variations in the transmission coefficient during a typical interstitial hyperthermia session using magnetic scaffolds. Our work brings together, for the first time, the electromagnetic material properties, the physio-pathology and physics of the hyperthermia treatment and the microwave propagation problem, thus paving the route for the development of an innovative theranostic system.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 4","pages":"344-353"},"PeriodicalIF":3.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10172102","citationCount":"3","resultStr":"{\"title\":\"Feasibility Analysis of Theranostic Magnetic Scaffolds for Microwave Monitoring of Hyperthermia Treatment of Bone Tumors\",\"authors\":\"Matteo Bruno Lodi;Nicola Curreli;Chiara Dachena;Alessandro Fedeli;Rosa Scapaticci;Andrea Randazzo;Matteo Pastorino;Alessandro Fanti\",\"doi\":\"10.1109/JERM.2023.3288741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic biomaterials are multifunctional tools currently under investigation as theranostic platforms for biomedical applications. They can be implanted in bone tissue after bone cancer resection to perform local interstitial hyperthermia treatment. Given the requirements of high quality treatment, the hyperthermia therapy should be performed monitoring the system temperature, to avoid hot spots and control the treatment outcome. It is known that the magnetic properties of such implants vary with temperature. It is hypotesized that the treatment dynamic could be monitored using a microwave monitoring system. The variation of the electromagnetic properties of the biological tissues and the magnetic implant during the therapy would result in a different propagation of the microwave signal. This work investigates the feasibility of using microwaves to non-invasively monitor hyperthermia treatments with a simplified monodimensional propagation model. The forward problem is solved to identify the working frequencies, the matching medium properties and study several candidate materials. By using the numerical solutions from nonlinear and multiphysics simulations of the bone tumor hyperthermia treatment using magnetic scaffolds, the microwave signal propagation dynamic is studied. From our feasibility analysis, we found that it is possible to correlate the average tumor temperature with significant (\\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n20 dB) variations in the transmission coefficient during a typical interstitial hyperthermia session using magnetic scaffolds. Our work brings together, for the first time, the electromagnetic material properties, the physio-pathology and physics of the hyperthermia treatment and the microwave propagation problem, thus paving the route for the development of an innovative theranostic system.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"7 4\",\"pages\":\"344-353\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10172102\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10172102/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10172102/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

磁性生物材料是一种多功能工具,目前正在研究作为生物医学应用的治疗平台。它们可以在骨癌切除后植入骨组织中进行局部间质热疗。鉴于高质量治疗的要求,热疗应监测系统温度,避免出现热点,控制治疗结果。众所周知,这种植入物的磁性随温度而变化。假设可以用微波监测系统监测处理动态。在治疗过程中,生物组织和磁性植入物的电磁特性会发生变化,导致微波信号的传播方式不同。本研究利用简化的一维传播模型,探讨微波无创监测热疗的可行性。解决了正演问题,确定了工作频率,匹配介质性质,并研究了几种候选材料。利用磁性支架骨肿瘤热疗过程的非线性多物理场模拟数值解,研究了微波信号的传播动态。从我们的可行性分析中,我们发现在使用磁性支架的典型间质热疗过程中,肿瘤平均温度与透射系数的显著变化($\sim$20 dB)是可能相关的。我们的工作首次将电磁材料特性、热疗治疗的生理病理学和物理学以及微波传播问题结合在一起,从而为开发创新的治疗系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility Analysis of Theranostic Magnetic Scaffolds for Microwave Monitoring of Hyperthermia Treatment of Bone Tumors
Magnetic biomaterials are multifunctional tools currently under investigation as theranostic platforms for biomedical applications. They can be implanted in bone tissue after bone cancer resection to perform local interstitial hyperthermia treatment. Given the requirements of high quality treatment, the hyperthermia therapy should be performed monitoring the system temperature, to avoid hot spots and control the treatment outcome. It is known that the magnetic properties of such implants vary with temperature. It is hypotesized that the treatment dynamic could be monitored using a microwave monitoring system. The variation of the electromagnetic properties of the biological tissues and the magnetic implant during the therapy would result in a different propagation of the microwave signal. This work investigates the feasibility of using microwaves to non-invasively monitor hyperthermia treatments with a simplified monodimensional propagation model. The forward problem is solved to identify the working frequencies, the matching medium properties and study several candidate materials. By using the numerical solutions from nonlinear and multiphysics simulations of the bone tumor hyperthermia treatment using magnetic scaffolds, the microwave signal propagation dynamic is studied. From our feasibility analysis, we found that it is possible to correlate the average tumor temperature with significant ( $\sim$ 20 dB) variations in the transmission coefficient during a typical interstitial hyperthermia session using magnetic scaffolds. Our work brings together, for the first time, the electromagnetic material properties, the physio-pathology and physics of the hyperthermia treatment and the microwave propagation problem, thus paving the route for the development of an innovative theranostic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1