高不确定性光伏预测下不同系统规模下的随机单元承诺

Muhammad Yasirroni, Lesnanto Multa Putranto, Sarjiya, Husni Rois Ali, Indra Triwibowo, Qiangqiang Xie
{"title":"高不确定性光伏预测下不同系统规模下的随机单元承诺","authors":"Muhammad Yasirroni, Lesnanto Multa Putranto, Sarjiya, Husni Rois Ali, Indra Triwibowo, Qiangqiang Xie","doi":"10.22146/jnteti.v12i1.5281","DOIUrl":null,"url":null,"abstract":"This paper proposes a stochastic unit commitment (SUC) approach to solve a day-ahead unit commitment (UC) problem in a system with high uncertainty net load which is caused by photovoltaic (PV) power plants. In contrast with robust unit commitment (RUC) which only considers the worst-case scenario, SUC considers every possible scenario with its probability. Multiple possible PV curves were obtained using k-means clustering on historical data. The proportion of cluster members was used as a weight factor representing the occurrence probability of PV curves. The test was separated into two-step tests, namely day-ahead and real-time markets, using IEEE 10 generating unit system and solved using CPLEX. The results showed that in a day-ahead UC, SUC ($539,896) had lower cost than RUC ($548,005). However, when the total energy generated was considered, the SUC (20.78 $/MWh) cost higher compared to RUC (20.75 $/MWh). It is because the solution proposed by SUC is as robust as the RUC, but the generation cost formulation also considers over-commitment. Thus, SUC produced a fairer price for the independent power producer and electric utility in the day-ahead calculation. The results also showed that in the test environment of the real-time market, SUC was able to produce a robust solution without going into over-commitment. It is clearly shown in a 30 units system test with 10 centroids, in which SUC had a cheaper solution (20.7253 $/MWh) compared to RUC (20.7285 $/MWh), without violating power balance or going to load shedding.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Unit Commitment in Various System Sizes under High Uncertainty Photovoltaic Forecast\",\"authors\":\"Muhammad Yasirroni, Lesnanto Multa Putranto, Sarjiya, Husni Rois Ali, Indra Triwibowo, Qiangqiang Xie\",\"doi\":\"10.22146/jnteti.v12i1.5281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a stochastic unit commitment (SUC) approach to solve a day-ahead unit commitment (UC) problem in a system with high uncertainty net load which is caused by photovoltaic (PV) power plants. In contrast with robust unit commitment (RUC) which only considers the worst-case scenario, SUC considers every possible scenario with its probability. Multiple possible PV curves were obtained using k-means clustering on historical data. The proportion of cluster members was used as a weight factor representing the occurrence probability of PV curves. The test was separated into two-step tests, namely day-ahead and real-time markets, using IEEE 10 generating unit system and solved using CPLEX. The results showed that in a day-ahead UC, SUC ($539,896) had lower cost than RUC ($548,005). However, when the total energy generated was considered, the SUC (20.78 $/MWh) cost higher compared to RUC (20.75 $/MWh). It is because the solution proposed by SUC is as robust as the RUC, but the generation cost formulation also considers over-commitment. Thus, SUC produced a fairer price for the independent power producer and electric utility in the day-ahead calculation. The results also showed that in the test environment of the real-time market, SUC was able to produce a robust solution without going into over-commitment. It is clearly shown in a 30 units system test with 10 centroids, in which SUC had a cheaper solution (20.7253 $/MWh) compared to RUC (20.7285 $/MWh), without violating power balance or going to load shedding.\",\"PeriodicalId\":31477,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro dan Teknologi Informasi\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro dan Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/jnteti.v12i1.5281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v12i1.5281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种随机单元承诺(SUC)方法来解决由光伏电站引起的高不确定性净负荷系统的日前单元承诺(UC)问题。与鲁棒单元承诺(RUC)只考虑最坏情况相比,SUC以其概率考虑每一种可能的情况。对历史数据进行k-means聚类,得到多个可能的PV曲线。以聚类成员的比例作为权重因子,表示PV曲线出现的概率。试验分为日前市场和实时市场两步试验,采用ieee10发电机组系统,采用CPLEX求解。结果显示,在一天前的UC中,SUC(539,896美元)的成本低于RUC(548,005美元)。然而,当考虑总发电量时,SUC(20.78美元/兆瓦时)的成本高于RUC(20.75美元/兆瓦时)。这是因为SUC提出的解决方案与RUC一样鲁棒,但发电成本公式也考虑了超承诺。因此,SUC在日前计算中为独立发电企业和电力公司提供了更公平的价格。结果还表明,在实时市场的测试环境中,SUC能够产生一个健壮的解决方案,而不会出现过度承诺。在具有10个质心的30个单元系统测试中,SUC的解决方案(20.7253美元/兆瓦时)比RUC(20.7285美元/兆瓦时)更便宜,并且没有违反功率平衡或负载下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Unit Commitment in Various System Sizes under High Uncertainty Photovoltaic Forecast
This paper proposes a stochastic unit commitment (SUC) approach to solve a day-ahead unit commitment (UC) problem in a system with high uncertainty net load which is caused by photovoltaic (PV) power plants. In contrast with robust unit commitment (RUC) which only considers the worst-case scenario, SUC considers every possible scenario with its probability. Multiple possible PV curves were obtained using k-means clustering on historical data. The proportion of cluster members was used as a weight factor representing the occurrence probability of PV curves. The test was separated into two-step tests, namely day-ahead and real-time markets, using IEEE 10 generating unit system and solved using CPLEX. The results showed that in a day-ahead UC, SUC ($539,896) had lower cost than RUC ($548,005). However, when the total energy generated was considered, the SUC (20.78 $/MWh) cost higher compared to RUC (20.75 $/MWh). It is because the solution proposed by SUC is as robust as the RUC, but the generation cost formulation also considers over-commitment. Thus, SUC produced a fairer price for the independent power producer and electric utility in the day-ahead calculation. The results also showed that in the test environment of the real-time market, SUC was able to produce a robust solution without going into over-commitment. It is clearly shown in a 30 units system test with 10 centroids, in which SUC had a cheaper solution (20.7253 $/MWh) compared to RUC (20.7285 $/MWh), without violating power balance or going to load shedding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Citra Tekstur Terbaik Untuk Gaussian Naïve Bayes Dengan Interpolasi Nearest Neighbor Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection Implementation of QR Code Attendance Security System Using RSA and Hash Algorithms Fog Computing-Based System for Decentralized Smart Parking System by Using Firebase Pemantauan dan Pengendalian Parameter Greenhouse Berbasis IoT Dengan Protokol MQTT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1