基于大爆炸大碰撞的避障节能轨迹规划

Sabri Yilmaz, Metin Gökaşan
{"title":"基于大爆炸大碰撞的避障节能轨迹规划","authors":"Sabri Yilmaz, Metin Gökaşan","doi":"10.1109/ICCSCE.2016.7893594","DOIUrl":null,"url":null,"abstract":"Robot manipulation has been an interesting topic for researchers over decades. While researches are going on, different problems occurred. One of the most important problems is energy consumption. Because operation time of mobile robots is fully related with energy consumption. In this study two main problems are taken into consideration, first one is minimization of energy consumption and second one is obstacle avoidance. For this purpose, a simple robot manipulator with two degrees of freedom is chosen. The objective function is selected as a function of applied torque values at the joints, minimization of objective function, results in minimization of motor currents. The algorithm checks if there is a contact between the obstacles and the manipulator, while the algorithm is searching for the trajectory polynomial that requires minimum energy consumption. Finally, the algorithm finds the trajectory polynomial that contains no contact between the manipulator and the obstacles, also minimizes energy consumption.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"1 1","pages":"332-337"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy efficient trajectory planning via Big Bang Big Crunch with obstacle avoidance\",\"authors\":\"Sabri Yilmaz, Metin Gökaşan\",\"doi\":\"10.1109/ICCSCE.2016.7893594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot manipulation has been an interesting topic for researchers over decades. While researches are going on, different problems occurred. One of the most important problems is energy consumption. Because operation time of mobile robots is fully related with energy consumption. In this study two main problems are taken into consideration, first one is minimization of energy consumption and second one is obstacle avoidance. For this purpose, a simple robot manipulator with two degrees of freedom is chosen. The objective function is selected as a function of applied torque values at the joints, minimization of objective function, results in minimization of motor currents. The algorithm checks if there is a contact between the obstacles and the manipulator, while the algorithm is searching for the trajectory polynomial that requires minimum energy consumption. Finally, the algorithm finds the trajectory polynomial that contains no contact between the manipulator and the obstacles, also minimizes energy consumption.\",\"PeriodicalId\":6540,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"1 1\",\"pages\":\"332-337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2016.7893594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,机器人操作一直是研究人员感兴趣的话题。在研究的过程中,出现了不同的问题。最重要的问题之一是能源消耗。因为移动机器人的操作时间与能耗是完全相关的。本研究主要考虑两个问题,一是能量消耗的最小化,二是避障问题。为此,选择了一种简单的二自由度机器人机械手。选择目标函数作为关节处施加转矩值的函数,目标函数的最小化导致电机电流的最小化。该算法检查障碍物与机械手之间是否存在接触,同时搜索能量消耗最小的轨迹多项式。最后,该算法找到不包含机械臂与障碍物接触的轨迹多项式,同时使能量消耗最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy efficient trajectory planning via Big Bang Big Crunch with obstacle avoidance
Robot manipulation has been an interesting topic for researchers over decades. While researches are going on, different problems occurred. One of the most important problems is energy consumption. Because operation time of mobile robots is fully related with energy consumption. In this study two main problems are taken into consideration, first one is minimization of energy consumption and second one is obstacle avoidance. For this purpose, a simple robot manipulator with two degrees of freedom is chosen. The objective function is selected as a function of applied torque values at the joints, minimization of objective function, results in minimization of motor currents. The algorithm checks if there is a contact between the obstacles and the manipulator, while the algorithm is searching for the trajectory polynomial that requires minimum energy consumption. Finally, the algorithm finds the trajectory polynomial that contains no contact between the manipulator and the obstacles, also minimizes energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RVP-FLMS: A robust variable power fractional LMS algorithm Verification of nine-phase PMSM model in d-q coordinates with mutual couplings Gamified outcomes-based teaching and learning assessment tool for Mapúa Institute of Technology Empirical testing of prototype real-time multi-hop MAC for Wireless Sensor Networks Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1