消费后聚对苯二甲酸乙酯瓶中粘合剂含量的表征及其对聚对苯二甲酸乙酯可回收性的影响评估

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Progress in Rubber Plastics and Recycling Technology Pub Date : 2023-01-17 DOI:10.1177/14777606231152507
S. M. Silva, E. Medeiros, Luciana S. Galvão, Amélia S F Santos
{"title":"消费后聚对苯二甲酸乙酯瓶中粘合剂含量的表征及其对聚对苯二甲酸乙酯可回收性的影响评估","authors":"S. M. Silva, E. Medeiros, Luciana S. Galvão, Amélia S F Santos","doi":"10.1177/14777606231152507","DOIUrl":null,"url":null,"abstract":"Although the consequences of adhesive residues from post-consumer Poly(ethylene terephthalate) (PET) beverage bottles on the performance of recycled products are known, the quantitative effects of these adhesives are not well-stablished in the literature. Therefore, these residues were determined by gravimetry, and the adhesive content range from 200 to 2800 ppm in post-consumer PET bottles, depending on the drink filled. Through FTIR analysis, it was determined that the adhesives for bottles labelling are composed by poly(ethylene-co-vinyl acetate) (EVA). Based on these results, recycled PET with 0, 200, 700, 1500 and 3000 ppm of hot-melt EVA were processed in an internal mixer connected to a torque rheometer at 265°C for 10 min. Tensile tests indicate that 200 ppm of adhesive reduced PET tensile strength by 15%. Furthermore, when about 1500 ppm of adhesive is present, PET mechanical properties are reduced by 50%. Therefore, it is of utmost importance to warn the PET bottle production chain to reduce adhesive content used in labelling so that it should not exceed 200 ppm, if a high quality recycled PET is desirable. Graphical Abstract","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"2020 1","pages":"250 - 263"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of adhesive content in post-consumer poly(ethylene terephthalate) bottles and assessment of its impact on poly(ethylene terephthalate) recyclability\",\"authors\":\"S. M. Silva, E. Medeiros, Luciana S. Galvão, Amélia S F Santos\",\"doi\":\"10.1177/14777606231152507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the consequences of adhesive residues from post-consumer Poly(ethylene terephthalate) (PET) beverage bottles on the performance of recycled products are known, the quantitative effects of these adhesives are not well-stablished in the literature. Therefore, these residues were determined by gravimetry, and the adhesive content range from 200 to 2800 ppm in post-consumer PET bottles, depending on the drink filled. Through FTIR analysis, it was determined that the adhesives for bottles labelling are composed by poly(ethylene-co-vinyl acetate) (EVA). Based on these results, recycled PET with 0, 200, 700, 1500 and 3000 ppm of hot-melt EVA were processed in an internal mixer connected to a torque rheometer at 265°C for 10 min. Tensile tests indicate that 200 ppm of adhesive reduced PET tensile strength by 15%. Furthermore, when about 1500 ppm of adhesive is present, PET mechanical properties are reduced by 50%. Therefore, it is of utmost importance to warn the PET bottle production chain to reduce adhesive content used in labelling so that it should not exceed 200 ppm, if a high quality recycled PET is desirable. Graphical Abstract\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"2020 1\",\"pages\":\"250 - 263\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606231152507\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606231152507","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

虽然消费后的聚对苯二甲酸乙酯(PET)饮料瓶的粘合剂残留物对回收产品性能的影响是已知的,但这些粘合剂的定量影响在文献中并没有很好地建立。因此,这些残留物是用重量法测定的,在消费后的PET瓶中,粘合剂的含量范围从200到2800 ppm,取决于所灌装的饮料。通过红外光谱分析,确定了用于瓶标的胶粘剂是由聚乙烯-醋酸乙烯酯(EVA)组成的。在此基础上,将含有0、200、700、1500和3000 ppm热熔EVA的回收PET在265°C的内部混炼机中与扭矩流变仪连接处理10分钟。拉伸测试表明,200 ppm的粘合剂使PET的拉伸强度降低了15%。此外,当约1500ppm的粘合剂存在时,PET的机械性能降低50%。因此,如果需要高质量的再生PET,警告PET瓶生产链减少标签中使用的粘合剂含量,使其不超过200 ppm是至关重要的。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of adhesive content in post-consumer poly(ethylene terephthalate) bottles and assessment of its impact on poly(ethylene terephthalate) recyclability
Although the consequences of adhesive residues from post-consumer Poly(ethylene terephthalate) (PET) beverage bottles on the performance of recycled products are known, the quantitative effects of these adhesives are not well-stablished in the literature. Therefore, these residues were determined by gravimetry, and the adhesive content range from 200 to 2800 ppm in post-consumer PET bottles, depending on the drink filled. Through FTIR analysis, it was determined that the adhesives for bottles labelling are composed by poly(ethylene-co-vinyl acetate) (EVA). Based on these results, recycled PET with 0, 200, 700, 1500 and 3000 ppm of hot-melt EVA were processed in an internal mixer connected to a torque rheometer at 265°C for 10 min. Tensile tests indicate that 200 ppm of adhesive reduced PET tensile strength by 15%. Furthermore, when about 1500 ppm of adhesive is present, PET mechanical properties are reduced by 50%. Therefore, it is of utmost importance to warn the PET bottle production chain to reduce adhesive content used in labelling so that it should not exceed 200 ppm, if a high quality recycled PET is desirable. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Rubber Plastics and Recycling Technology
Progress in Rubber Plastics and Recycling Technology MATERIALS SCIENCE, COMPOSITES-POLYMER SCIENCE
CiteScore
4.40
自引率
7.70%
发文量
18
审稿时长
>12 weeks
期刊介绍: The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.
期刊最新文献
Characterization and application of composite resin of natural rubber latex and polystyrene waste as a binder for water-resistant emulsion paint formulation Lignin dispersion in polybutadiene rubber (BR) with different mixing parameters Comparative study: High performance polymers of polyphenylene sulfide and polyethylenimine using Taguchi-Topsis optimization approaches Contribution of geometrical infill pattern on mechanical behaviour of 3D manufactured polylactic acid specimen: Experimental and numerical analysis Non-linear mechanical behaviour of thermoplastic elastomeric materials and its vulcanizate under tension/tension fatigue deformation by fourier transform rheological studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1