{"title":"物理建模及距离和强度边缘数据的组合","authors":"Zhang G.H., Wallace A.","doi":"10.1006/ciun.1993.1038","DOIUrl":null,"url":null,"abstract":"<div><p>We present a method for semantic labelling of edges and reconstruction of range data by fusion of registered range and intensity images. An initial set of edge labels is derived using a physical model of object geometry and shading. A final edge classification and range reconstruction are obtained using Bayesian estimation within coupled Markov random fields employing constraints of surface smoothness and edge continuity. The approach is demonstrated on synthetic and real source data, obtained from an active laser rangefinder.</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":"58 2","pages":"Pages 191-220"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1993.1038","citationCount":"20","resultStr":"{\"title\":\"Physical Modeling and Combination of Range and Intensity Edge Data\",\"authors\":\"Zhang G.H., Wallace A.\",\"doi\":\"10.1006/ciun.1993.1038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a method for semantic labelling of edges and reconstruction of range data by fusion of registered range and intensity images. An initial set of edge labels is derived using a physical model of object geometry and shading. A final edge classification and range reconstruction are obtained using Bayesian estimation within coupled Markov random fields employing constraints of surface smoothness and edge continuity. The approach is demonstrated on synthetic and real source data, obtained from an active laser rangefinder.</p></div>\",\"PeriodicalId\":100350,\"journal\":{\"name\":\"CVGIP: Image Understanding\",\"volume\":\"58 2\",\"pages\":\"Pages 191-220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/ciun.1993.1038\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Image Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049966083710387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049966083710387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical Modeling and Combination of Range and Intensity Edge Data
We present a method for semantic labelling of edges and reconstruction of range data by fusion of registered range and intensity images. An initial set of edge labels is derived using a physical model of object geometry and shading. A final edge classification and range reconstruction are obtained using Bayesian estimation within coupled Markov random fields employing constraints of surface smoothness and edge continuity. The approach is demonstrated on synthetic and real source data, obtained from an active laser rangefinder.