基于AOA的风力发电系统AVR-LFC组合模型最优控制

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2022-11-22 DOI:10.1177/0309524X221133791
Amita Singh, Veena Sharma, Vineet Kumar, R. Naresh, O. P. Rahi
{"title":"基于AOA的风力发电系统AVR-LFC组合模型最优控制","authors":"Amita Singh, Veena Sharma, Vineet Kumar, R. Naresh, O. P. Rahi","doi":"10.1177/0309524X221133791","DOIUrl":null,"url":null,"abstract":"This manuscript analyses a case study of a wind-integrated power plant where an Arithmetic Optimization Algorithm-based Model Predictive Controller (AOA-MPC) has been employed for the combined control of voltage and frequency. The work in this manuscript considers stochastic variations in wind output caused by the small stochastic drifts and sudden deterministic shifts in the wind turbine output. The proposed controller’s performance has been judged after assessing the time response performance specifications/indices and comparing it with the existing recent methodologies available in the literature. Further improvement in frequency oscillations reduction has been obtained while considering the Redox Flow Battery (RFB) loop as an auxiliary Load Frequency Control loop. Moreover, the computational potential of the presented algorithm has been tested under different nonlinearities and time delay cases in the Area Control Error (ACE) of the load frequency control (LFC) loop.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"512 1","pages":"515 - 527"},"PeriodicalIF":1.5000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AOA based optimal control of combined AVR-LFC model in wind integrated power system\",\"authors\":\"Amita Singh, Veena Sharma, Vineet Kumar, R. Naresh, O. P. Rahi\",\"doi\":\"10.1177/0309524X221133791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript analyses a case study of a wind-integrated power plant where an Arithmetic Optimization Algorithm-based Model Predictive Controller (AOA-MPC) has been employed for the combined control of voltage and frequency. The work in this manuscript considers stochastic variations in wind output caused by the small stochastic drifts and sudden deterministic shifts in the wind turbine output. The proposed controller’s performance has been judged after assessing the time response performance specifications/indices and comparing it with the existing recent methodologies available in the literature. Further improvement in frequency oscillations reduction has been obtained while considering the Redox Flow Battery (RFB) loop as an auxiliary Load Frequency Control loop. Moreover, the computational potential of the presented algorithm has been tested under different nonlinearities and time delay cases in the Area Control Error (ACE) of the load frequency control (LFC) loop.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"512 1\",\"pages\":\"515 - 527\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X221133791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221133791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文以某风力发电机组为例,采用基于算法优化算法的模型预测控制器(AOA-MPC)进行电压和频率的组合控制。本文的工作考虑了由风力发电机输出的小随机漂移和突然确定性变化引起的风输出的随机变化。在评估时间响应性能规格/指标并将其与文献中现有的最新方法进行比较后,对所提出的控制器的性能进行了判断。将氧化还原液流电池(RFB)回路作为辅助负载频率控制回路,进一步改善了频率振荡的减少。此外,在负载频率控制回路的区域控制误差(ACE)中,测试了该算法在不同非线性和时滞情况下的计算潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AOA based optimal control of combined AVR-LFC model in wind integrated power system
This manuscript analyses a case study of a wind-integrated power plant where an Arithmetic Optimization Algorithm-based Model Predictive Controller (AOA-MPC) has been employed for the combined control of voltage and frequency. The work in this manuscript considers stochastic variations in wind output caused by the small stochastic drifts and sudden deterministic shifts in the wind turbine output. The proposed controller’s performance has been judged after assessing the time response performance specifications/indices and comparing it with the existing recent methodologies available in the literature. Further improvement in frequency oscillations reduction has been obtained while considering the Redox Flow Battery (RFB) loop as an auxiliary Load Frequency Control loop. Moreover, the computational potential of the presented algorithm has been tested under different nonlinearities and time delay cases in the Area Control Error (ACE) of the load frequency control (LFC) loop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Extended state observer-based primary load frequency controller for power systems with ultra-high wind-energy penetration Quantifying the impact of sensor precision on power output of a wind turbine: A sensitivity analysis via Monte Carlo simulation study Design and realization of a pre-production platform for wind turbine manufacturing Analysis of wind power curve modeling using multi-model regression On the aerodynamics of dual-stage co-axial vertical-axis wind turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1