Amita Singh, Veena Sharma, Vineet Kumar, R. Naresh, O. P. Rahi
{"title":"基于AOA的风力发电系统AVR-LFC组合模型最优控制","authors":"Amita Singh, Veena Sharma, Vineet Kumar, R. Naresh, O. P. Rahi","doi":"10.1177/0309524X221133791","DOIUrl":null,"url":null,"abstract":"This manuscript analyses a case study of a wind-integrated power plant where an Arithmetic Optimization Algorithm-based Model Predictive Controller (AOA-MPC) has been employed for the combined control of voltage and frequency. The work in this manuscript considers stochastic variations in wind output caused by the small stochastic drifts and sudden deterministic shifts in the wind turbine output. The proposed controller’s performance has been judged after assessing the time response performance specifications/indices and comparing it with the existing recent methodologies available in the literature. Further improvement in frequency oscillations reduction has been obtained while considering the Redox Flow Battery (RFB) loop as an auxiliary Load Frequency Control loop. Moreover, the computational potential of the presented algorithm has been tested under different nonlinearities and time delay cases in the Area Control Error (ACE) of the load frequency control (LFC) loop.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"512 1","pages":"515 - 527"},"PeriodicalIF":1.5000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AOA based optimal control of combined AVR-LFC model in wind integrated power system\",\"authors\":\"Amita Singh, Veena Sharma, Vineet Kumar, R. Naresh, O. P. Rahi\",\"doi\":\"10.1177/0309524X221133791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript analyses a case study of a wind-integrated power plant where an Arithmetic Optimization Algorithm-based Model Predictive Controller (AOA-MPC) has been employed for the combined control of voltage and frequency. The work in this manuscript considers stochastic variations in wind output caused by the small stochastic drifts and sudden deterministic shifts in the wind turbine output. The proposed controller’s performance has been judged after assessing the time response performance specifications/indices and comparing it with the existing recent methodologies available in the literature. Further improvement in frequency oscillations reduction has been obtained while considering the Redox Flow Battery (RFB) loop as an auxiliary Load Frequency Control loop. Moreover, the computational potential of the presented algorithm has been tested under different nonlinearities and time delay cases in the Area Control Error (ACE) of the load frequency control (LFC) loop.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"512 1\",\"pages\":\"515 - 527\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X221133791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221133791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
AOA based optimal control of combined AVR-LFC model in wind integrated power system
This manuscript analyses a case study of a wind-integrated power plant where an Arithmetic Optimization Algorithm-based Model Predictive Controller (AOA-MPC) has been employed for the combined control of voltage and frequency. The work in this manuscript considers stochastic variations in wind output caused by the small stochastic drifts and sudden deterministic shifts in the wind turbine output. The proposed controller’s performance has been judged after assessing the time response performance specifications/indices and comparing it with the existing recent methodologies available in the literature. Further improvement in frequency oscillations reduction has been obtained while considering the Redox Flow Battery (RFB) loop as an auxiliary Load Frequency Control loop. Moreover, the computational potential of the presented algorithm has been tested under different nonlinearities and time delay cases in the Area Control Error (ACE) of the load frequency control (LFC) loop.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.