Y. Shiraishi, K. Harada, Chikao Maeda, Fumitoshi Ogino, Yuta Suzuki, N. Okada, K. Tomomatsu, Y. Sekine, U. Yanagi, T. Imanishi, T. Oguma, K. Asano
{"title":"一种评价和消除家用空调真菌污染的方法","authors":"Y. Shiraishi, K. Harada, Chikao Maeda, Fumitoshi Ogino, Yuta Suzuki, N. Okada, K. Tomomatsu, Y. Sekine, U. Yanagi, T. Imanishi, T. Oguma, K. Asano","doi":"10.1155/2023/8984619","DOIUrl":null,"url":null,"abstract":"Background. Allergic fungal airway diseases, such as asthma and allergic bronchopulmonary mycosis (ABPM), are often difficult to manage with medical treatment alone; therefore, environmental fungal exposure should be accurately evaluated and minimized. In the present study, we established a method to evaluate and eliminate fungal contamination in household air conditioners (ACs). Methods. In the fall of 2020, an environmental survey of living rooms was conducted in 17 Japanese residences of patients with ABPM or related diseases. Household ductless minisplit AC units were disassembled to collect swab samples from the internal parts (filter, heat exchanger, blower fan, and air vent), followed by high-pressure washing. Fungal abundance and composition in swab samples and cleaning effluents of ACs as well as house dust and air samples were determined using quantitative PCR and next-generation sequencing of the internal transcribed spacer 1 region, respectively. A weighted UniFrac distance was calculated to analyze the similarity of the mycobiome among the samples. Results. All interior parts of ACs contained high levels of fungal DNA, with the blower fans being the most contaminated parts. Cladosporium and Toxicocladosporium, followed by Aureobasidium, Aspergillus, and Rhodotorula, were the most common fungi detected in the AC unit. High-pressure washing decreased fungal abundance by over 99% in all AC parts. Fungal abundance and composition in blower fans were strongly correlated with those in cleaning effluents. Conclusion. Interior parts downstream of heat exchangers in household ACs are the major sites of fungal contamination, possibly polluting the indoor air in the residences. High-pressure washing is highly effective for decontamination.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method to Evaluate and Eliminate Fungal Contamination in Household Air Conditioners\",\"authors\":\"Y. Shiraishi, K. Harada, Chikao Maeda, Fumitoshi Ogino, Yuta Suzuki, N. Okada, K. Tomomatsu, Y. Sekine, U. Yanagi, T. Imanishi, T. Oguma, K. Asano\",\"doi\":\"10.1155/2023/8984619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background. Allergic fungal airway diseases, such as asthma and allergic bronchopulmonary mycosis (ABPM), are often difficult to manage with medical treatment alone; therefore, environmental fungal exposure should be accurately evaluated and minimized. In the present study, we established a method to evaluate and eliminate fungal contamination in household air conditioners (ACs). Methods. In the fall of 2020, an environmental survey of living rooms was conducted in 17 Japanese residences of patients with ABPM or related diseases. Household ductless minisplit AC units were disassembled to collect swab samples from the internal parts (filter, heat exchanger, blower fan, and air vent), followed by high-pressure washing. Fungal abundance and composition in swab samples and cleaning effluents of ACs as well as house dust and air samples were determined using quantitative PCR and next-generation sequencing of the internal transcribed spacer 1 region, respectively. A weighted UniFrac distance was calculated to analyze the similarity of the mycobiome among the samples. Results. All interior parts of ACs contained high levels of fungal DNA, with the blower fans being the most contaminated parts. Cladosporium and Toxicocladosporium, followed by Aureobasidium, Aspergillus, and Rhodotorula, were the most common fungi detected in the AC unit. High-pressure washing decreased fungal abundance by over 99% in all AC parts. Fungal abundance and composition in blower fans were strongly correlated with those in cleaning effluents. Conclusion. Interior parts downstream of heat exchangers in household ACs are the major sites of fungal contamination, possibly polluting the indoor air in the residences. High-pressure washing is highly effective for decontamination.\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8984619\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1155/2023/8984619","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A Method to Evaluate and Eliminate Fungal Contamination in Household Air Conditioners
Background. Allergic fungal airway diseases, such as asthma and allergic bronchopulmonary mycosis (ABPM), are often difficult to manage with medical treatment alone; therefore, environmental fungal exposure should be accurately evaluated and minimized. In the present study, we established a method to evaluate and eliminate fungal contamination in household air conditioners (ACs). Methods. In the fall of 2020, an environmental survey of living rooms was conducted in 17 Japanese residences of patients with ABPM or related diseases. Household ductless minisplit AC units were disassembled to collect swab samples from the internal parts (filter, heat exchanger, blower fan, and air vent), followed by high-pressure washing. Fungal abundance and composition in swab samples and cleaning effluents of ACs as well as house dust and air samples were determined using quantitative PCR and next-generation sequencing of the internal transcribed spacer 1 region, respectively. A weighted UniFrac distance was calculated to analyze the similarity of the mycobiome among the samples. Results. All interior parts of ACs contained high levels of fungal DNA, with the blower fans being the most contaminated parts. Cladosporium and Toxicocladosporium, followed by Aureobasidium, Aspergillus, and Rhodotorula, were the most common fungi detected in the AC unit. High-pressure washing decreased fungal abundance by over 99% in all AC parts. Fungal abundance and composition in blower fans were strongly correlated with those in cleaning effluents. Conclusion. Interior parts downstream of heat exchangers in household ACs are the major sites of fungal contamination, possibly polluting the indoor air in the residences. High-pressure washing is highly effective for decontamination.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.