量化具有相互依赖的民用基础设施系统的社区抗灾能力的组成部分的重要性

N. Blagojević, M. Didier, B. Stojadinović
{"title":"量化具有相互依赖的民用基础设施系统的社区抗灾能力的组成部分的重要性","authors":"N. Blagojević, M. Didier, B. Stojadinović","doi":"10.31224/osf.io/hzmy8","DOIUrl":null,"url":null,"abstract":"Communities and their supporting civil infrastructure systems can be viewed as an assembly of, often numerous, interacting components. Tools that can identify components relevant for community disaster resilience can help to efficiently allocate limited resources to reach community resilience goals. We use Sobol’ indices to measure the importance of vulnerability and recoverability of components for disaster resilience of communities with interdependent civil infrastructure systems. The initial component importance analysis requires no prior knowledge regarding component’s vulnerability and recoverability. We first rank components based on their importance, using their Sobol’ indices. Secondly, we illustrate how the results of the component importance analysis can be used to improve community disaster resilience. Finally, we use component importance to show how model complexity can be reduced by abstracting less important components.","PeriodicalId":21122,"journal":{"name":"Reliab. Eng. Syst. Saf.","volume":"82 1","pages":"108747"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems\",\"authors\":\"N. Blagojević, M. Didier, B. Stojadinović\",\"doi\":\"10.31224/osf.io/hzmy8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communities and their supporting civil infrastructure systems can be viewed as an assembly of, often numerous, interacting components. Tools that can identify components relevant for community disaster resilience can help to efficiently allocate limited resources to reach community resilience goals. We use Sobol’ indices to measure the importance of vulnerability and recoverability of components for disaster resilience of communities with interdependent civil infrastructure systems. The initial component importance analysis requires no prior knowledge regarding component’s vulnerability and recoverability. We first rank components based on their importance, using their Sobol’ indices. Secondly, we illustrate how the results of the component importance analysis can be used to improve community disaster resilience. Finally, we use component importance to show how model complexity can be reduced by abstracting less important components.\",\"PeriodicalId\":21122,\"journal\":{\"name\":\"Reliab. Eng. Syst. Saf.\",\"volume\":\"82 1\",\"pages\":\"108747\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliab. Eng. Syst. Saf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31224/osf.io/hzmy8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliab. Eng. Syst. Saf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31224/osf.io/hzmy8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

社区及其配套的民用基础设施系统可被视为一个通常由众多相互作用的部件组成的集合。能够识别与社区抗灾能力相关的组成部分的工具可以帮助有效地分配有限的资源,以实现社区抗灾能力目标。我们使用Sobol指数来衡量具有相互依赖的民用基础设施系统的社区的脆弱性和可恢复性的重要性。初始组件重要性分析不需要预先了解组件的脆弱性和可恢复性。我们首先根据它们的重要性,使用它们的Sobol指数对组件进行排名。其次,我们说明了如何利用成分重要性分析的结果来提高社区的抗灾能力。最后,我们使用组件重要性来展示如何通过抽象不太重要的组件来降低模型复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems
Communities and their supporting civil infrastructure systems can be viewed as an assembly of, often numerous, interacting components. Tools that can identify components relevant for community disaster resilience can help to efficiently allocate limited resources to reach community resilience goals. We use Sobol’ indices to measure the importance of vulnerability and recoverability of components for disaster resilience of communities with interdependent civil infrastructure systems. The initial component importance analysis requires no prior knowledge regarding component’s vulnerability and recoverability. We first rank components based on their importance, using their Sobol’ indices. Secondly, we illustrate how the results of the component importance analysis can be used to improve community disaster resilience. Finally, we use component importance to show how model complexity can be reduced by abstracting less important components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flood risk assessment and mitigation for metro stations: An evidential-reasoning-based optimality approach considering uncertainty of subjective parameters Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis Bridging POMDPs and Bayesian decision making for robust maintenance planning under model uncertainty: An application to railway systems MAntRA: A framework for model agnostic reliability analysis Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1