西北爪哇近海溢油处理的遥感技术

Audra Ligafinza, F. Sajjad, M. Jabbar, Anggia Fatmawati, A. Wirawan, Wingky Suganda
{"title":"西北爪哇近海溢油处理的遥感技术","authors":"Audra Ligafinza, F. Sajjad, M. Jabbar, Anggia Fatmawati, A. Wirawan, Wingky Suganda","doi":"10.2118/205607-ms","DOIUrl":null,"url":null,"abstract":"\n During the blowout event, it is critical to track the oil spill to minimize environmental damage and optimize restoration cost. In this paper, we deliver our success story in handling oil spill from recent experiences. We utilize remote sensing technologies to establish our analysis and plan the remediation strategies. We also comprehensively discuss the techniques to analyze big data from the satellites, to utilize the downloaded data for forecasting, and to align the satellite information with restoration strategies.\n PHE relies on its principle to maintain minimum damage and ensures safety by dividing the steps into several aspects of monitoring, response (offshore and onshore), shoreline management and waste management. PHE utilizes latest development in survey by using satellite imaging, survey boat, chopper and UAV drone. Spill containment is done using several layers of oil boom to recover oil spill, complemented with skimmers and storage tanks. PHE encourages shoreline remediation using nets and manual recovery for capturing oil sludge.\n Using this combination of technologies, PHE is able to model and anticipate oil spill movement from the source up until the farthest shoreline. This enables real time monitoring and handling, therefore minimum environmental damage is ensured. PHE also employs prudent engineering design based on real time field condition in order to ensure the equipment are highly suited for the condition, as well as ensuring good supply chain of the material availability.\n This publication addresses the first offshore blowout mitigation and handling in Indonesia that uses novel technologies such as static oil boom, satellite imaging and integrated effort in handling shoreline damage. It is hoped that the experience can be replicated for other offshore operating contractors in Indonesia in designing blowout remediation.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Sensing in Oil Spill Handling in Offshore North West Java\",\"authors\":\"Audra Ligafinza, F. Sajjad, M. Jabbar, Anggia Fatmawati, A. Wirawan, Wingky Suganda\",\"doi\":\"10.2118/205607-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n During the blowout event, it is critical to track the oil spill to minimize environmental damage and optimize restoration cost. In this paper, we deliver our success story in handling oil spill from recent experiences. We utilize remote sensing technologies to establish our analysis and plan the remediation strategies. We also comprehensively discuss the techniques to analyze big data from the satellites, to utilize the downloaded data for forecasting, and to align the satellite information with restoration strategies.\\n PHE relies on its principle to maintain minimum damage and ensures safety by dividing the steps into several aspects of monitoring, response (offshore and onshore), shoreline management and waste management. PHE utilizes latest development in survey by using satellite imaging, survey boat, chopper and UAV drone. Spill containment is done using several layers of oil boom to recover oil spill, complemented with skimmers and storage tanks. PHE encourages shoreline remediation using nets and manual recovery for capturing oil sludge.\\n Using this combination of technologies, PHE is able to model and anticipate oil spill movement from the source up until the farthest shoreline. This enables real time monitoring and handling, therefore minimum environmental damage is ensured. PHE also employs prudent engineering design based on real time field condition in order to ensure the equipment are highly suited for the condition, as well as ensuring good supply chain of the material availability.\\n This publication addresses the first offshore blowout mitigation and handling in Indonesia that uses novel technologies such as static oil boom, satellite imaging and integrated effort in handling shoreline damage. It is hoped that the experience can be replicated for other offshore operating contractors in Indonesia in designing blowout remediation.\",\"PeriodicalId\":11017,\"journal\":{\"name\":\"Day 2 Wed, October 13, 2021\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 13, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205607-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 13, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205607-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在井喷事故发生时,对溢油进行跟踪是最小化环境破坏和优化修复成本的关键。在本文中,我们从最近的经验中提供了处理溢油的成功故事。我们利用遥感技术建立我们的分析和规划修复策略。我们还全面讨论了分析卫星大数据、利用下载数据进行预报以及将卫星信息与恢复策略相结合的技术。PHE依靠其原则,通过将步骤分为监测,响应(海上和陆上),海岸线管理和废物管理几个方面,以保持最小的损害并确保安全。PHE利用最新的调查发展,利用卫星成像,调查船,直升机和无人机。溢油控制是用几层围油栏来回收溢油,辅以撇油器和储油罐。公共卫生部门鼓励使用渔网和人工回收来捕获油泥来修复海岸线。通过这些技术的结合,PHE能够模拟和预测从源头到最远海岸线的石油泄漏运动。这使实时监测和处理成为可能,因此确保对环境的破坏最小。PHE还根据现场实时情况进行了谨慎的工程设计,以确保设备高度适应现场情况,并确保物料供应的良好供应链。本出版物介绍了印度尼西亚第一个海上井喷缓解和处理方法,该方法使用了诸如静态油栅、卫星成像和综合努力等新技术来处理海岸线损害。希望这一经验可以为印度尼西亚其他海上作业承包商在设计井喷补救措施方面加以借鉴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remote Sensing in Oil Spill Handling in Offshore North West Java
During the blowout event, it is critical to track the oil spill to minimize environmental damage and optimize restoration cost. In this paper, we deliver our success story in handling oil spill from recent experiences. We utilize remote sensing technologies to establish our analysis and plan the remediation strategies. We also comprehensively discuss the techniques to analyze big data from the satellites, to utilize the downloaded data for forecasting, and to align the satellite information with restoration strategies. PHE relies on its principle to maintain minimum damage and ensures safety by dividing the steps into several aspects of monitoring, response (offshore and onshore), shoreline management and waste management. PHE utilizes latest development in survey by using satellite imaging, survey boat, chopper and UAV drone. Spill containment is done using several layers of oil boom to recover oil spill, complemented with skimmers and storage tanks. PHE encourages shoreline remediation using nets and manual recovery for capturing oil sludge. Using this combination of technologies, PHE is able to model and anticipate oil spill movement from the source up until the farthest shoreline. This enables real time monitoring and handling, therefore minimum environmental damage is ensured. PHE also employs prudent engineering design based on real time field condition in order to ensure the equipment are highly suited for the condition, as well as ensuring good supply chain of the material availability. This publication addresses the first offshore blowout mitigation and handling in Indonesia that uses novel technologies such as static oil boom, satellite imaging and integrated effort in handling shoreline damage. It is hoped that the experience can be replicated for other offshore operating contractors in Indonesia in designing blowout remediation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technological Features of Associated Petroleum Gas Miscible Injection MGI in Order to Increase Oil Recovery at a Remote Group of Fields in Western Siberia Interdisciplinary Approach for Wellbore Stability During Slimhole Drilling at Volga-Urals Basin Oilfield A Set of Solutions to Reduce the Water Cut in Well Production Production Optimiser Pilot for the Large Artificially-Lifted and Mature Samotlor Oil Field Artificial Neural Network as a Method for Pore Pressure Prediction throughout the Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1