{"title":"漆酶功能化的磁框架复合材料使氯酚降解成为一种潜在的皮革杀菌剂残留修复方法","authors":"Min Cao, Jie Yu, Xing Zhang, Yamei Lin, He Huang","doi":"10.1186/s42825-022-00094-3","DOIUrl":null,"url":null,"abstract":"<p>Chlorophenols, used as the fungicides in leather, are strictly limited in leather products. In this work, a metal–organic framework material, zeolitic metal azolate framework-7 (MAF-7), was first used to encapsulate laccase (Lac) to prepare MAF-7/Lac bio-composites with 98.5% immobilization yield. Afterward, Lac/MNP@MOM was formed by introducing the magnetic nanoparticles (MNPs) into the Lac@MOM. MAF-7 with better hydrophilicity and stronger pH buffering ability, exhibits good compatibility with laccase, which can reserve the activity of laccase after immobilization. Moreover, the porous structure of MAF-7 is favorable for the sufficient contact between laccase and substrates. Lac/MNP@MOM exhibited excellent activity when exposed to high temperature, extreme pH, and organic solvents, which also simplified complex recovery steps. Furthermore, the degradation rate of 2,4-dichlorophenol (2,4-DCP) could reach as high as 97% within 24 h by immobilized laccase, and after nine consecutive cycles of operation, enzyme activity could remain over 80%, which gives it the potential for practical applications.</p>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-022-00094-3","citationCount":"4","resultStr":"{\"title\":\"Laccase-functionalized magnetic framework composite enabled chlorophenols degradation, a potential remediation for fungicides residues in leather\",\"authors\":\"Min Cao, Jie Yu, Xing Zhang, Yamei Lin, He Huang\",\"doi\":\"10.1186/s42825-022-00094-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chlorophenols, used as the fungicides in leather, are strictly limited in leather products. In this work, a metal–organic framework material, zeolitic metal azolate framework-7 (MAF-7), was first used to encapsulate laccase (Lac) to prepare MAF-7/Lac bio-composites with 98.5% immobilization yield. Afterward, Lac/MNP@MOM was formed by introducing the magnetic nanoparticles (MNPs) into the Lac@MOM. MAF-7 with better hydrophilicity and stronger pH buffering ability, exhibits good compatibility with laccase, which can reserve the activity of laccase after immobilization. Moreover, the porous structure of MAF-7 is favorable for the sufficient contact between laccase and substrates. Lac/MNP@MOM exhibited excellent activity when exposed to high temperature, extreme pH, and organic solvents, which also simplified complex recovery steps. Furthermore, the degradation rate of 2,4-dichlorophenol (2,4-DCP) could reach as high as 97% within 24 h by immobilized laccase, and after nine consecutive cycles of operation, enzyme activity could remain over 80%, which gives it the potential for practical applications.</p>\",\"PeriodicalId\":640,\"journal\":{\"name\":\"Journal of Leather Science and Engineering\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-022-00094-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leather Science and Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42825-022-00094-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leather Science and Engineering","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1186/s42825-022-00094-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laccase-functionalized magnetic framework composite enabled chlorophenols degradation, a potential remediation for fungicides residues in leather
Chlorophenols, used as the fungicides in leather, are strictly limited in leather products. In this work, a metal–organic framework material, zeolitic metal azolate framework-7 (MAF-7), was first used to encapsulate laccase (Lac) to prepare MAF-7/Lac bio-composites with 98.5% immobilization yield. Afterward, Lac/MNP@MOM was formed by introducing the magnetic nanoparticles (MNPs) into the Lac@MOM. MAF-7 with better hydrophilicity and stronger pH buffering ability, exhibits good compatibility with laccase, which can reserve the activity of laccase after immobilization. Moreover, the porous structure of MAF-7 is favorable for the sufficient contact between laccase and substrates. Lac/MNP@MOM exhibited excellent activity when exposed to high temperature, extreme pH, and organic solvents, which also simplified complex recovery steps. Furthermore, the degradation rate of 2,4-dichlorophenol (2,4-DCP) could reach as high as 97% within 24 h by immobilized laccase, and after nine consecutive cycles of operation, enzyme activity could remain over 80%, which gives it the potential for practical applications.