{"title":"大规模湍流中粒子追踪的挑战","authors":"D. Buaria, P. Yeung","doi":"10.1145/2616498.2616526","DOIUrl":null,"url":null,"abstract":"An important but somewhat under-investigated issue in turbulence as a challenge in high-performance computing is the problem of interpolating, from a set of grid points, the velocity of many millions of fluid particles that wander in the flow field, which itself is divided into a larger number of sub-domains according to a chosen domain decomposition scheme. We present below the main elements of the algoithmic strategies that have led to reasonably good performance on two major Petascale computers, namely Stampede and Blue Waters. Performance data are presented at up to 16384 CPU cores for 64 million fluid particles.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"115 1","pages":"11:1-11:2"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges in particle tracking in turbulence on a massive scale\",\"authors\":\"D. Buaria, P. Yeung\",\"doi\":\"10.1145/2616498.2616526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important but somewhat under-investigated issue in turbulence as a challenge in high-performance computing is the problem of interpolating, from a set of grid points, the velocity of many millions of fluid particles that wander in the flow field, which itself is divided into a larger number of sub-domains according to a chosen domain decomposition scheme. We present below the main elements of the algoithmic strategies that have led to reasonably good performance on two major Petascale computers, namely Stampede and Blue Waters. Performance data are presented at up to 16384 CPU cores for 64 million fluid particles.\",\"PeriodicalId\":93364,\"journal\":{\"name\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"volume\":\"115 1\",\"pages\":\"11:1-11:2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2616498.2616526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2616498.2616526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为高性能计算的挑战,湍流中的一个重要但有些未被研究的问题是,从一组网格点插值出在流场中游荡的数百万流体粒子的速度问题,流场本身根据选定的域分解方案划分为更多的子域。我们在下面介绍了在两台主要的千兆级计算机(即Stampede和Blue Waters)上取得相当不错性能的算法策略的主要元素。性能数据呈现在高达16384个CPU核心的6400万个流体颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Challenges in particle tracking in turbulence on a massive scale
An important but somewhat under-investigated issue in turbulence as a challenge in high-performance computing is the problem of interpolating, from a set of grid points, the velocity of many millions of fluid particles that wander in the flow field, which itself is divided into a larger number of sub-domains according to a chosen domain decomposition scheme. We present below the main elements of the algoithmic strategies that have led to reasonably good performance on two major Petascale computers, namely Stampede and Blue Waters. Performance data are presented at up to 16384 CPU cores for 64 million fluid particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CloudBridge: a Simple Cross-Cloud Python Library. pbsacct: A Workload Analysis System for PBS-Based HPC Systems ECSS Experience: Particle Tracing Reinvented Fast, Low-Memory Algorithm for Construction of Nanosecond Level Snapshots of Financial Markets Benchmarking SSD-Based Lustre File System Configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1