通过模态幻觉学习副信息

Judy Hoffman, Saurabh Gupta, Trevor Darrell
{"title":"通过模态幻觉学习副信息","authors":"Judy Hoffman, Saurabh Gupta, Trevor Darrell","doi":"10.1109/CVPR.2016.96","DOIUrl":null,"url":null,"abstract":"We present a modality hallucination architecture for training an RGB object detection model which incorporates depth side information at training time. Our convolutional hallucination network learns a new and complementary RGB image representation which is taught to mimic convolutional mid-level features from a depth network. At test time images are processed jointly through the RGB and hallucination networks to produce improved detection performance. Thus, our method transfers information commonly extracted from depth training data to a network which can extract that information from the RGB counterpart. We present results on the standard NYUDv2 dataset and report improvement on the RGB detection task.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"21 1","pages":"826-834"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"199","resultStr":"{\"title\":\"Learning with Side Information through Modality Hallucination\",\"authors\":\"Judy Hoffman, Saurabh Gupta, Trevor Darrell\",\"doi\":\"10.1109/CVPR.2016.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a modality hallucination architecture for training an RGB object detection model which incorporates depth side information at training time. Our convolutional hallucination network learns a new and complementary RGB image representation which is taught to mimic convolutional mid-level features from a depth network. At test time images are processed jointly through the RGB and hallucination networks to produce improved detection performance. Thus, our method transfers information commonly extracted from depth training data to a network which can extract that information from the RGB counterpart. We present results on the standard NYUDv2 dataset and report improvement on the RGB detection task.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"21 1\",\"pages\":\"826-834\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"199\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 199

摘要

我们提出了一种用于训练RGB目标检测模型的模态幻觉架构,该模型在训练时包含深度侧信息。我们的卷积幻觉网络学习了一种新的和互补的RGB图像表示,它被教导模仿来自深度网络的卷积中级特征。在测试时,图像通过RGB和幻觉网络共同处理,以提高检测性能。因此,我们的方法将通常从深度训练数据中提取的信息传输到可以从RGB对应数据中提取信息的网络中。我们在标准NYUDv2数据集上展示了结果,并报告了RGB检测任务的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning with Side Information through Modality Hallucination
We present a modality hallucination architecture for training an RGB object detection model which incorporates depth side information at training time. Our convolutional hallucination network learns a new and complementary RGB image representation which is taught to mimic convolutional mid-level features from a depth network. At test time images are processed jointly through the RGB and hallucination networks to produce improved detection performance. Thus, our method transfers information commonly extracted from depth training data to a network which can extract that information from the RGB counterpart. We present results on the standard NYUDv2 dataset and report improvement on the RGB detection task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1