{"title":"深规范开采","authors":"Tien-Duy B. Le, D. Lo","doi":"10.1145/3213846.3213876","DOIUrl":null,"url":null,"abstract":"Formal specifcations are essential but usually unavailable in software systems. Furthermore, writing these specifcations is costly and requires skills from developers. Recently, many automated techniques have been proposed to mine specifcations in various formats including fnite-state automaton (FSA). However, more works in specifcation mining are needed to further improve the accuracy of the inferred specifcations. In this work, we propose Deep Specifcation Miner (DSM), a new approach that performs deep learning for mining FSA-based specifcations. Our proposed approach uses test case generation to generate a richer set of execution traces for training a Recurrent Neural Network Based Language Model (RNNLM). From these execution traces, we construct a Prefx Tree Acceptor (PTA) and use the learned RNNLM to extract many features. These features are subsequently utilized by clustering algorithms to merge similar automata states in the PTA for constructing a number of FSAs. Then, our approach performs a model selection heuristic to estimate F-measure of FSAs and returns the one with the highest estimated Fmeasure. We execute DSM to mine specifcations of 11 target library classes. Our empirical analysis shows that DSM achieves an average F-measure of 71.97%, outperforming the best performing baseline by 28.22%. We also demonstrate the value of DSM in sandboxing Android apps.","PeriodicalId":20542,"journal":{"name":"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Deep specification mining\",\"authors\":\"Tien-Duy B. Le, D. Lo\",\"doi\":\"10.1145/3213846.3213876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formal specifcations are essential but usually unavailable in software systems. Furthermore, writing these specifcations is costly and requires skills from developers. Recently, many automated techniques have been proposed to mine specifcations in various formats including fnite-state automaton (FSA). However, more works in specifcation mining are needed to further improve the accuracy of the inferred specifcations. In this work, we propose Deep Specifcation Miner (DSM), a new approach that performs deep learning for mining FSA-based specifcations. Our proposed approach uses test case generation to generate a richer set of execution traces for training a Recurrent Neural Network Based Language Model (RNNLM). From these execution traces, we construct a Prefx Tree Acceptor (PTA) and use the learned RNNLM to extract many features. These features are subsequently utilized by clustering algorithms to merge similar automata states in the PTA for constructing a number of FSAs. Then, our approach performs a model selection heuristic to estimate F-measure of FSAs and returns the one with the highest estimated Fmeasure. We execute DSM to mine specifcations of 11 target library classes. Our empirical analysis shows that DSM achieves an average F-measure of 71.97%, outperforming the best performing baseline by 28.22%. We also demonstrate the value of DSM in sandboxing Android apps.\",\"PeriodicalId\":20542,\"journal\":{\"name\":\"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3213846.3213876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3213846.3213876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formal specifcations are essential but usually unavailable in software systems. Furthermore, writing these specifcations is costly and requires skills from developers. Recently, many automated techniques have been proposed to mine specifcations in various formats including fnite-state automaton (FSA). However, more works in specifcation mining are needed to further improve the accuracy of the inferred specifcations. In this work, we propose Deep Specifcation Miner (DSM), a new approach that performs deep learning for mining FSA-based specifcations. Our proposed approach uses test case generation to generate a richer set of execution traces for training a Recurrent Neural Network Based Language Model (RNNLM). From these execution traces, we construct a Prefx Tree Acceptor (PTA) and use the learned RNNLM to extract many features. These features are subsequently utilized by clustering algorithms to merge similar automata states in the PTA for constructing a number of FSAs. Then, our approach performs a model selection heuristic to estimate F-measure of FSAs and returns the one with the highest estimated Fmeasure. We execute DSM to mine specifcations of 11 target library classes. Our empirical analysis shows that DSM achieves an average F-measure of 71.97%, outperforming the best performing baseline by 28.22%. We also demonstrate the value of DSM in sandboxing Android apps.