{"title":"用于高性能3D集成电路的3D堆叠微流控冷却","authors":"Yue Zhang, A. Dembla, Y. Joshi, Muhannad S. Bakir","doi":"10.1109/ECTC.2012.6249058","DOIUrl":null,"url":null,"abstract":"Cooling is a significant challenge for high-performance high-power 3D ICs. hi this paper, we describe the experimental evaluation of 3D ICs with embedded microfluidic cooling. Different architectures are experimentally evaluated ine hiding: 1) a memory-on-processor stack. 2) a processor-on-processor stack with equal power dissipation, and 3) a processor-on-processor stack with different power dissipation, hi all cases, embedded microfluidic cooling shows significant junction temperature reduction compared to air-cooling.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":"64 1","pages":"1644-1650"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"3D stacked microfluidic cooling for high-performance 3D ICs\",\"authors\":\"Yue Zhang, A. Dembla, Y. Joshi, Muhannad S. Bakir\",\"doi\":\"10.1109/ECTC.2012.6249058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooling is a significant challenge for high-performance high-power 3D ICs. hi this paper, we describe the experimental evaluation of 3D ICs with embedded microfluidic cooling. Different architectures are experimentally evaluated ine hiding: 1) a memory-on-processor stack. 2) a processor-on-processor stack with equal power dissipation, and 3) a processor-on-processor stack with different power dissipation, hi all cases, embedded microfluidic cooling shows significant junction temperature reduction compared to air-cooling.\",\"PeriodicalId\":6384,\"journal\":{\"name\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"volume\":\"64 1\",\"pages\":\"1644-1650\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2012.6249058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6249058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D stacked microfluidic cooling for high-performance 3D ICs
Cooling is a significant challenge for high-performance high-power 3D ICs. hi this paper, we describe the experimental evaluation of 3D ICs with embedded microfluidic cooling. Different architectures are experimentally evaluated ine hiding: 1) a memory-on-processor stack. 2) a processor-on-processor stack with equal power dissipation, and 3) a processor-on-processor stack with different power dissipation, hi all cases, embedded microfluidic cooling shows significant junction temperature reduction compared to air-cooling.