{"title":"归因分数与相关测度:反事实框架中的概念关系","authors":"E. Suzuki, E. Yamamoto","doi":"10.1515/jci-2021-0068","DOIUrl":null,"url":null,"abstract":"Abstract The attributable fraction (population) has attracted much attention from a theoretical perspective and has been used extensively to assess the impact of potential health interventions. However, despite its extensive use, there is much confusion about its concept and calculation methods. In this article, we discuss the concepts of and calculation methods for the attributable fraction and related measures in the counterfactual framework, both with and without stratification by covariates. Generally, the attributable fraction is useful when the exposure of interest has a causal effect on the outcome. However, it is important to understand that this statement applies to the exposed group. Although the target population of the attributable fraction (population) is the total population, the causal effect should be present not in the total population but in the exposed group. As related measures, we discuss the preventable fraction and prevented fraction, which are generally useful when the exposure of interest has a preventive effect on the outcome, and we further propose a new measure called the attributed fraction. We also discuss the causal and preventive excess fractions, and provide notes on vaccine efficacy. Finally, we discuss the relations between the aforementioned six measures and six possible patterns using a conceptual schema.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attributable fraction and related measures: Conceptual relations in the counterfactual framework\",\"authors\":\"E. Suzuki, E. Yamamoto\",\"doi\":\"10.1515/jci-2021-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The attributable fraction (population) has attracted much attention from a theoretical perspective and has been used extensively to assess the impact of potential health interventions. However, despite its extensive use, there is much confusion about its concept and calculation methods. In this article, we discuss the concepts of and calculation methods for the attributable fraction and related measures in the counterfactual framework, both with and without stratification by covariates. Generally, the attributable fraction is useful when the exposure of interest has a causal effect on the outcome. However, it is important to understand that this statement applies to the exposed group. Although the target population of the attributable fraction (population) is the total population, the causal effect should be present not in the total population but in the exposed group. As related measures, we discuss the preventable fraction and prevented fraction, which are generally useful when the exposure of interest has a preventive effect on the outcome, and we further propose a new measure called the attributed fraction. We also discuss the causal and preventive excess fractions, and provide notes on vaccine efficacy. Finally, we discuss the relations between the aforementioned six measures and six possible patterns using a conceptual schema.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2021-0068\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2021-0068","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Attributable fraction and related measures: Conceptual relations in the counterfactual framework
Abstract The attributable fraction (population) has attracted much attention from a theoretical perspective and has been used extensively to assess the impact of potential health interventions. However, despite its extensive use, there is much confusion about its concept and calculation methods. In this article, we discuss the concepts of and calculation methods for the attributable fraction and related measures in the counterfactual framework, both with and without stratification by covariates. Generally, the attributable fraction is useful when the exposure of interest has a causal effect on the outcome. However, it is important to understand that this statement applies to the exposed group. Although the target population of the attributable fraction (population) is the total population, the causal effect should be present not in the total population but in the exposed group. As related measures, we discuss the preventable fraction and prevented fraction, which are generally useful when the exposure of interest has a preventive effect on the outcome, and we further propose a new measure called the attributed fraction. We also discuss the causal and preventive excess fractions, and provide notes on vaccine efficacy. Finally, we discuss the relations between the aforementioned six measures and six possible patterns using a conceptual schema.
期刊介绍:
Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.