采用网络即服务的车联网

Pranjul Kumar, Sanmukh Kaur
{"title":"采用网络即服务的车联网","authors":"Pranjul Kumar, Sanmukh Kaur","doi":"10.2174/2210327912666220324142310","DOIUrl":null,"url":null,"abstract":"\n\nVehicular Ad Hoc Networks (VANETs) are built on the principles of Mobile Ad-hoc networks, and there are numerous approaches to achieve vehicular communication like vehicle to infrastructure or by vehicle to vehicle with the advantage of Ad-hoc networks. In VANETs, the vehicle to itself and vehicle to roadside architecture both coexist to lend safety, services, and navigation; therefore they are an integral element of the intelligent transportation systems framework. The routing protocols in vehicle-to-vehicle communication are used to optimize the propagation of the messages.\n\n\n\nThe purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.\n\n\n\nThe purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.\n\n\n\nIt evaluates DSDV, DSR & AODV protocols in Simulation of Urban Mobility (SUMO) through the open street map. SUMO mobility file was configured to the Network Simulator 3 to study the performance of AODV, DSDV, and DSR.\n\n\n\nBy examining the protocols, we concluded that AODV is better when evaluated on the parameters named end-to-end delay, packet drop ratio, and throughput. The practical application of our study can be found in collision alert, emergency response community, highway/rail collision avoidance, etc.\n","PeriodicalId":37686,"journal":{"name":"International Journal of Sensors, Wireless Communications and Control","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internet of Vehicles Employing Network as a Service\",\"authors\":\"Pranjul Kumar, Sanmukh Kaur\",\"doi\":\"10.2174/2210327912666220324142310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nVehicular Ad Hoc Networks (VANETs) are built on the principles of Mobile Ad-hoc networks, and there are numerous approaches to achieve vehicular communication like vehicle to infrastructure or by vehicle to vehicle with the advantage of Ad-hoc networks. In VANETs, the vehicle to itself and vehicle to roadside architecture both coexist to lend safety, services, and navigation; therefore they are an integral element of the intelligent transportation systems framework. The routing protocols in vehicle-to-vehicle communication are used to optimize the propagation of the messages.\\n\\n\\n\\nThe purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.\\n\\n\\n\\nThe purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.\\n\\n\\n\\nIt evaluates DSDV, DSR & AODV protocols in Simulation of Urban Mobility (SUMO) through the open street map. SUMO mobility file was configured to the Network Simulator 3 to study the performance of AODV, DSDV, and DSR.\\n\\n\\n\\nBy examining the protocols, we concluded that AODV is better when evaluated on the parameters named end-to-end delay, packet drop ratio, and throughput. The practical application of our study can be found in collision alert, emergency response community, highway/rail collision avoidance, etc.\\n\",\"PeriodicalId\":37686,\"journal\":{\"name\":\"International Journal of Sensors, Wireless Communications and Control\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sensors, Wireless Communications and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210327912666220324142310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sensors, Wireless Communications and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210327912666220324142310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

车辆自组织网络(vanet)建立在移动自组织网络的原理之上,利用自组织网络的优势,有许多方法可以实现车辆之间的通信,如车辆与基础设施或车辆与车辆之间的通信。在VANETs中,车辆本身和车辆与路边建筑共存,提供安全、服务和导航;因此,它们是智能交通系统框架的一个组成部分。利用车对车通信中的路由协议优化消息的传播。本研究的目的是在端到端延迟、丢包率和吞吐量等各种性能指标的基础上分析路由协议的特征。将Ad-Hoc按需距离矢量(AODV)、动态源路由(DSR)和目的地顺序距离矢量(DSDV)这三种路由协议进行了比较。本研究的目的是在端到端延迟、丢包率和吞吐量等各种性能指标的基础上分析路由协议的特征。将Ad-Hoc按需距离矢量(AODV)、动态源路由(DSR)和目的地顺序距离矢量(DSDV)这三种路由协议进行了比较。通过开放街道地图对城市交通仿真(SUMO)中的DSDV、DSR和AODV协议进行了评估。将SUMO移动文件配置到Network Simulator 3中,以研究AODV、DSDV和DSR的性能。通过检查协议,我们得出结论,在端到端延迟、丢包率和吞吐量等参数上进行评估时,AODV更好。本研究的实际应用可以在碰撞预警、应急响应社区、高速公路/铁路避碰等方面找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Internet of Vehicles Employing Network as a Service
Vehicular Ad Hoc Networks (VANETs) are built on the principles of Mobile Ad-hoc networks, and there are numerous approaches to achieve vehicular communication like vehicle to infrastructure or by vehicle to vehicle with the advantage of Ad-hoc networks. In VANETs, the vehicle to itself and vehicle to roadside architecture both coexist to lend safety, services, and navigation; therefore they are an integral element of the intelligent transportation systems framework. The routing protocols in vehicle-to-vehicle communication are used to optimize the propagation of the messages. The purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario. The purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario. It evaluates DSDV, DSR & AODV protocols in Simulation of Urban Mobility (SUMO) through the open street map. SUMO mobility file was configured to the Network Simulator 3 to study the performance of AODV, DSDV, and DSR. By examining the protocols, we concluded that AODV is better when evaluated on the parameters named end-to-end delay, packet drop ratio, and throughput. The practical application of our study can be found in collision alert, emergency response community, highway/rail collision avoidance, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Sensors, Wireless Communications and Control
International Journal of Sensors, Wireless Communications and Control Engineering-Electrical and Electronic Engineering
CiteScore
2.20
自引率
0.00%
发文量
53
期刊介绍: International Journal of Sensors, Wireless Communications and Control publishes timely research articles, full-length/ mini reviews and communications on these three strongly related areas, with emphasis on networked control systems whose sensors are interconnected via wireless communication networks. The emergence of high speed wireless network technologies allows a cluster of devices to be linked together economically to form a distributed system. Wireless communication is playing an increasingly important role in such distributed systems. Transmitting sensor measurements and control commands over wireless links allows rapid deployment, flexible installation, fully mobile operation and prevents the cable wear and tear problem in industrial automation, healthcare and environmental assessment. Wireless networked systems has raised and continues to raise fundamental challenges in the fields of science, engineering and industrial applications, hence, more new modelling techniques, problem formulations and solutions are required.
期刊最新文献
Non-orthogonal Multiple Access (NOMA) Channel Estimation for Mobile & PLC-VLC Based Broadband Communication System Optimizing Financial Decision Support Systems with Machine LearningDriven Recommendations An Energy-Balance Clustering Routing Protocol for Intra-Body Wireless Nanosensor Networks Unveiling Data Fairness Functional Requirements in Big Data Analytics Through Data Mapping and Classification Analysis An Intelligent Transport System Using Vehicular Network for Smart Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1