{"title":"采用网络即服务的车联网","authors":"Pranjul Kumar, Sanmukh Kaur","doi":"10.2174/2210327912666220324142310","DOIUrl":null,"url":null,"abstract":"\n\nVehicular Ad Hoc Networks (VANETs) are built on the principles of Mobile Ad-hoc networks, and there are numerous approaches to achieve vehicular communication like vehicle to infrastructure or by vehicle to vehicle with the advantage of Ad-hoc networks. In VANETs, the vehicle to itself and vehicle to roadside architecture both coexist to lend safety, services, and navigation; therefore they are an integral element of the intelligent transportation systems framework. The routing protocols in vehicle-to-vehicle communication are used to optimize the propagation of the messages.\n\n\n\nThe purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.\n\n\n\nThe purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.\n\n\n\nIt evaluates DSDV, DSR & AODV protocols in Simulation of Urban Mobility (SUMO) through the open street map. SUMO mobility file was configured to the Network Simulator 3 to study the performance of AODV, DSDV, and DSR.\n\n\n\nBy examining the protocols, we concluded that AODV is better when evaluated on the parameters named end-to-end delay, packet drop ratio, and throughput. The practical application of our study can be found in collision alert, emergency response community, highway/rail collision avoidance, etc.\n","PeriodicalId":37686,"journal":{"name":"International Journal of Sensors, Wireless Communications and Control","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internet of Vehicles Employing Network as a Service\",\"authors\":\"Pranjul Kumar, Sanmukh Kaur\",\"doi\":\"10.2174/2210327912666220324142310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nVehicular Ad Hoc Networks (VANETs) are built on the principles of Mobile Ad-hoc networks, and there are numerous approaches to achieve vehicular communication like vehicle to infrastructure or by vehicle to vehicle with the advantage of Ad-hoc networks. In VANETs, the vehicle to itself and vehicle to roadside architecture both coexist to lend safety, services, and navigation; therefore they are an integral element of the intelligent transportation systems framework. The routing protocols in vehicle-to-vehicle communication are used to optimize the propagation of the messages.\\n\\n\\n\\nThe purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.\\n\\n\\n\\nThe purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.\\n\\n\\n\\nIt evaluates DSDV, DSR & AODV protocols in Simulation of Urban Mobility (SUMO) through the open street map. SUMO mobility file was configured to the Network Simulator 3 to study the performance of AODV, DSDV, and DSR.\\n\\n\\n\\nBy examining the protocols, we concluded that AODV is better when evaluated on the parameters named end-to-end delay, packet drop ratio, and throughput. The practical application of our study can be found in collision alert, emergency response community, highway/rail collision avoidance, etc.\\n\",\"PeriodicalId\":37686,\"journal\":{\"name\":\"International Journal of Sensors, Wireless Communications and Control\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sensors, Wireless Communications and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210327912666220324142310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sensors, Wireless Communications and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210327912666220324142310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Internet of Vehicles Employing Network as a Service
Vehicular Ad Hoc Networks (VANETs) are built on the principles of Mobile Ad-hoc networks, and there are numerous approaches to achieve vehicular communication like vehicle to infrastructure or by vehicle to vehicle with the advantage of Ad-hoc networks. In VANETs, the vehicle to itself and vehicle to roadside architecture both coexist to lend safety, services, and navigation; therefore they are an integral element of the intelligent transportation systems framework. The routing protocols in vehicle-to-vehicle communication are used to optimize the propagation of the messages.
The purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.
The purpose of this study is to analyze the traits of the routing protocols on the basis of various performance metrics like end-to-end delay, packet drop ratio, and throughput. The routing protocols named Ad-Hoc on-demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Destination Sequenced Distance Vector (DSDV) have been compared considering a real-life scenario.
It evaluates DSDV, DSR & AODV protocols in Simulation of Urban Mobility (SUMO) through the open street map. SUMO mobility file was configured to the Network Simulator 3 to study the performance of AODV, DSDV, and DSR.
By examining the protocols, we concluded that AODV is better when evaluated on the parameters named end-to-end delay, packet drop ratio, and throughput. The practical application of our study can be found in collision alert, emergency response community, highway/rail collision avoidance, etc.
期刊介绍:
International Journal of Sensors, Wireless Communications and Control publishes timely research articles, full-length/ mini reviews and communications on these three strongly related areas, with emphasis on networked control systems whose sensors are interconnected via wireless communication networks. The emergence of high speed wireless network technologies allows a cluster of devices to be linked together economically to form a distributed system. Wireless communication is playing an increasingly important role in such distributed systems. Transmitting sensor measurements and control commands over wireless links allows rapid deployment, flexible installation, fully mobile operation and prevents the cable wear and tear problem in industrial automation, healthcare and environmental assessment. Wireless networked systems has raised and continues to raise fundamental challenges in the fields of science, engineering and industrial applications, hence, more new modelling techniques, problem formulations and solutions are required.