基于离散紧致度的矢量量化网络训练:增强自动脑组织分类

R. Pérez-Aguila
{"title":"基于离散紧致度的矢量量化网络训练:增强自动脑组织分类","authors":"R. Pérez-Aguila","doi":"10.1155/2013/278241","DOIUrl":null,"url":null,"abstract":"An approach for nonsupervised segmentation of Computed Tomography (CT) brain slices which is based on the use of Vector Quantization Networks (VQNs) is described. Images are segmented via a VQN in such way that tissue is characterized according to its geometrical and topological neighborhood. The main contribution rises from the proposal of a similarity metric which is based on the application of Discrete Compactness (DC) which is a factor that provides information about the shape of an object. One of its main strengths lies in the sense of its low sensitivity to variations, due to noise or capture defects, in the shape of an object. We will present, compare, and discuss some examples of segmentation networks trained under Kohonen's original algorithm and also under our similarity metric. Some experiments are established in order tomeasure the effectiveness and robustness, under our application of interest, of the proposed networks and similarity metric.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"125 1","pages":"278241:1-278241:18"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Discrete Compactness-Based Training for Vector Quantization Networks: Enhancing Automatic Brain Tissue Classification\",\"authors\":\"R. Pérez-Aguila\",\"doi\":\"10.1155/2013/278241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach for nonsupervised segmentation of Computed Tomography (CT) brain slices which is based on the use of Vector Quantization Networks (VQNs) is described. Images are segmented via a VQN in such way that tissue is characterized according to its geometrical and topological neighborhood. The main contribution rises from the proposal of a similarity metric which is based on the application of Discrete Compactness (DC) which is a factor that provides information about the shape of an object. One of its main strengths lies in the sense of its low sensitivity to variations, due to noise or capture defects, in the shape of an object. We will present, compare, and discuss some examples of segmentation networks trained under Kohonen's original algorithm and also under our similarity metric. Some experiments are established in order tomeasure the effectiveness and robustness, under our application of interest, of the proposed networks and similarity metric.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"125 1\",\"pages\":\"278241:1-278241:18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/278241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/278241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于矢量量化网络(VQNs)的计算机断层扫描(CT)脑切片的无监督分割方法。通过VQN对图像进行分割,使组织根据其几何和拓扑邻域进行特征化。主要贡献来自基于离散紧度(DC)应用的相似性度量的提议,这是一个提供关于物体形状信息的因素。它的主要优势之一在于对物体形状的变化(由于噪声或捕获缺陷)的低灵敏度。我们将展示、比较和讨论在Kohonen的原始算法和我们的相似度度量下训练的分割网络的一些例子。在我们感兴趣的应用下,建立了一些实验来衡量所提出的网络和相似度度量的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Discrete Compactness-Based Training for Vector Quantization Networks: Enhancing Automatic Brain Tissue Classification
An approach for nonsupervised segmentation of Computed Tomography (CT) brain slices which is based on the use of Vector Quantization Networks (VQNs) is described. Images are segmented via a VQN in such way that tissue is characterized according to its geometrical and topological neighborhood. The main contribution rises from the proposal of a similarity metric which is based on the application of Discrete Compactness (DC) which is a factor that provides information about the shape of an object. One of its main strengths lies in the sense of its low sensitivity to variations, due to noise or capture defects, in the shape of an object. We will present, compare, and discuss some examples of segmentation networks trained under Kohonen's original algorithm and also under our similarity metric. Some experiments are established in order tomeasure the effectiveness and robustness, under our application of interest, of the proposed networks and similarity metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovery of MicroRNAs in Cardamom (Elettaria cardamomum Maton) under Drought Stress Anopheles gambiae: Metabolomic Profiles in Sugar-Fed, Blood-Fed, and Plasmodium falciparum-Infected Midgut Five-Coordinate Zinc(II) Complex: Synthesis, Characterization, Molecular Structure, and Antibacterial Activities of Bis-[(E)-2-hydroxy-N′- {1-(4-methoxyphenyl)ethylidene}benzohydrazido]dimethylsulfoxidezinc(II) Complex Effect of Glyphosate and Mancozeb on the Rhizobia Isolated from Nodules of Vicia faba L. and on Their N2-Fixation, North Showa, Amhara Regional State, Ethiopia Balancing African Elephant Conservation with Human Well-Being in Rombo Area, Tanzania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1