Silvestro V. Veneruso, Yan Bertrand, F. Leotta, Estefanía Serral, Massimo Mecella
{"title":"基于模型的智能家居模拟器:实现再现性和标准化","authors":"Silvestro V. Veneruso, Yan Bertrand, F. Leotta, Estefanía Serral, Massimo Mecella","doi":"10.3233/ais-220016","DOIUrl":null,"url":null,"abstract":"Scientific contributions in the area of smart environments cover different tasks of ambient intelligence including action and activity recognition, anomaly detection, and automated enactment. Algorithms solving these tasks need to be validated against sensor logs of smart environments. In order to acquire these datasets, expensive facilities are needed, containing sensors, actuators and an acquisition infrastructure. Even though several freely accessible datasets are available, each of them features a very specific set of sensors, which can limit the introduction of novel approaches that could benefit of particular types of sensors and deployment layouts. Additionally, acquiring a dataset requires a considerable human effort for labeling purposes, thus further limiting the creation of new and general ones. In this paper, we propose a model-based simulator capable to generate synthetic datasets that emulate the characteristics of the vast majority of real datasets while granting trustworthy evaluation results. The datasets are generated using the eXtensible Event Stream – XES international standard commonly used for representing event logs. Finally, the datasets produced by the simulator are validated against two real scenario’s logs from the literature.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"32 1","pages":"143-163"},"PeriodicalIF":1.8000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A model-based simulator for smart homes: Enabling reproducibility and standardization\",\"authors\":\"Silvestro V. Veneruso, Yan Bertrand, F. Leotta, Estefanía Serral, Massimo Mecella\",\"doi\":\"10.3233/ais-220016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific contributions in the area of smart environments cover different tasks of ambient intelligence including action and activity recognition, anomaly detection, and automated enactment. Algorithms solving these tasks need to be validated against sensor logs of smart environments. In order to acquire these datasets, expensive facilities are needed, containing sensors, actuators and an acquisition infrastructure. Even though several freely accessible datasets are available, each of them features a very specific set of sensors, which can limit the introduction of novel approaches that could benefit of particular types of sensors and deployment layouts. Additionally, acquiring a dataset requires a considerable human effort for labeling purposes, thus further limiting the creation of new and general ones. In this paper, we propose a model-based simulator capable to generate synthetic datasets that emulate the characteristics of the vast majority of real datasets while granting trustworthy evaluation results. The datasets are generated using the eXtensible Event Stream – XES international standard commonly used for representing event logs. Finally, the datasets produced by the simulator are validated against two real scenario’s logs from the literature.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"32 1\",\"pages\":\"143-163\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-220016\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-220016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A model-based simulator for smart homes: Enabling reproducibility and standardization
Scientific contributions in the area of smart environments cover different tasks of ambient intelligence including action and activity recognition, anomaly detection, and automated enactment. Algorithms solving these tasks need to be validated against sensor logs of smart environments. In order to acquire these datasets, expensive facilities are needed, containing sensors, actuators and an acquisition infrastructure. Even though several freely accessible datasets are available, each of them features a very specific set of sensors, which can limit the introduction of novel approaches that could benefit of particular types of sensors and deployment layouts. Additionally, acquiring a dataset requires a considerable human effort for labeling purposes, thus further limiting the creation of new and general ones. In this paper, we propose a model-based simulator capable to generate synthetic datasets that emulate the characteristics of the vast majority of real datasets while granting trustworthy evaluation results. The datasets are generated using the eXtensible Event Stream – XES international standard commonly used for representing event logs. Finally, the datasets produced by the simulator are validated against two real scenario’s logs from the literature.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.