Rakan Al Yateem, Mohammad S. Al-Kadem, Suliman Alodhiani, Majed Kishi
{"title":"通过开发增强的测试效度方法实现生产优化","authors":"Rakan Al Yateem, Mohammad S. Al-Kadem, Suliman Alodhiani, Majed Kishi","doi":"10.2118/207351-ms","DOIUrl":null,"url":null,"abstract":"\n Rate testing has evolved over the years. From a simple composite separator system, the scope of rate testing has morphed into a broad spectrum of sophisticated downhole and surface technologies. Knowing well behavior, performance, and associated rate are the key factors of operating an entire field with the most reliable operating strategy, assuring maximum well-life time. In regard to well modeling and optimization, valid rate test data are crucial to predict well performance efficiently.\n An in-house rate testing mechanism was developed to ensure proper delivery, accuracy, and validity of rate tests. The mechanism comprises a rate testing procedure and decision-making tree. The rate testing procedure includes regular checks of rate testing data reports. Also, the immediate resolution of rate testing equipment or communication issues is implemented through the utilization of an MPFM Advanced Monitoring System with automated logics. A decision-making tree constitutes pre- and post-testing process phases. The pre-testing process phase involves an assessment for rate testing readiness in terms of testing equipment and communication. The post-testing process phase includes an assessment for testing operation and rate test validity where rate test data are checked and validated based on production operational status.\n The enhanced testing mechanism is a user-friendly guideline for testing requirements to ensure the completion of tests captured from testing equipment. The proper implementation of this rate testing mechanism enabled a high quality and accuracy of rate test data, resulting in an increase in rate testing validity by 30%. Also, the rate testing mechanism inspired a culture of continuous effective communication for all involved parties during the testing operation. The decision-making tree transforms the validation process from subjective thinking to a systematic workflow while integrating data from nearby wells with similar behavior. A high ownership level is exhibited by taking the immediate resolution of issues results in achieving high rate testing validity percentage. Running the process through standardized operating procedures is critical in generating consistent and predictable results of well performance. Additionally, accurate optimization and prediction of well performance have been realized by feeding the well model's data before and after attaining valid rate test data, which attests to the quality of the proposed rate testing mechanism.\n Considering the importance of having a strategic rate testing mechanism, it is highly advised to have more frequent measurements to raise the accuracy of the measurements presented. An ideal strategic rate testing mechanism has to be economical enough to be placed in many production wells, allow the tests to be performed in an organized manner, improve measurement accuracy, and, more importantly, achieve automated and supervised well tests processes.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":"319 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flourishing Production Optimization thru the Development of an Enhanced Testing Validity Methodology\",\"authors\":\"Rakan Al Yateem, Mohammad S. Al-Kadem, Suliman Alodhiani, Majed Kishi\",\"doi\":\"10.2118/207351-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rate testing has evolved over the years. From a simple composite separator system, the scope of rate testing has morphed into a broad spectrum of sophisticated downhole and surface technologies. Knowing well behavior, performance, and associated rate are the key factors of operating an entire field with the most reliable operating strategy, assuring maximum well-life time. In regard to well modeling and optimization, valid rate test data are crucial to predict well performance efficiently.\\n An in-house rate testing mechanism was developed to ensure proper delivery, accuracy, and validity of rate tests. The mechanism comprises a rate testing procedure and decision-making tree. The rate testing procedure includes regular checks of rate testing data reports. Also, the immediate resolution of rate testing equipment or communication issues is implemented through the utilization of an MPFM Advanced Monitoring System with automated logics. A decision-making tree constitutes pre- and post-testing process phases. The pre-testing process phase involves an assessment for rate testing readiness in terms of testing equipment and communication. The post-testing process phase includes an assessment for testing operation and rate test validity where rate test data are checked and validated based on production operational status.\\n The enhanced testing mechanism is a user-friendly guideline for testing requirements to ensure the completion of tests captured from testing equipment. The proper implementation of this rate testing mechanism enabled a high quality and accuracy of rate test data, resulting in an increase in rate testing validity by 30%. Also, the rate testing mechanism inspired a culture of continuous effective communication for all involved parties during the testing operation. The decision-making tree transforms the validation process from subjective thinking to a systematic workflow while integrating data from nearby wells with similar behavior. A high ownership level is exhibited by taking the immediate resolution of issues results in achieving high rate testing validity percentage. Running the process through standardized operating procedures is critical in generating consistent and predictable results of well performance. Additionally, accurate optimization and prediction of well performance have been realized by feeding the well model's data before and after attaining valid rate test data, which attests to the quality of the proposed rate testing mechanism.\\n Considering the importance of having a strategic rate testing mechanism, it is highly advised to have more frequent measurements to raise the accuracy of the measurements presented. An ideal strategic rate testing mechanism has to be economical enough to be placed in many production wells, allow the tests to be performed in an organized manner, improve measurement accuracy, and, more importantly, achieve automated and supervised well tests processes.\",\"PeriodicalId\":11069,\"journal\":{\"name\":\"Day 2 Tue, November 16, 2021\",\"volume\":\"319 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, November 16, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207351-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207351-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flourishing Production Optimization thru the Development of an Enhanced Testing Validity Methodology
Rate testing has evolved over the years. From a simple composite separator system, the scope of rate testing has morphed into a broad spectrum of sophisticated downhole and surface technologies. Knowing well behavior, performance, and associated rate are the key factors of operating an entire field with the most reliable operating strategy, assuring maximum well-life time. In regard to well modeling and optimization, valid rate test data are crucial to predict well performance efficiently.
An in-house rate testing mechanism was developed to ensure proper delivery, accuracy, and validity of rate tests. The mechanism comprises a rate testing procedure and decision-making tree. The rate testing procedure includes regular checks of rate testing data reports. Also, the immediate resolution of rate testing equipment or communication issues is implemented through the utilization of an MPFM Advanced Monitoring System with automated logics. A decision-making tree constitutes pre- and post-testing process phases. The pre-testing process phase involves an assessment for rate testing readiness in terms of testing equipment and communication. The post-testing process phase includes an assessment for testing operation and rate test validity where rate test data are checked and validated based on production operational status.
The enhanced testing mechanism is a user-friendly guideline for testing requirements to ensure the completion of tests captured from testing equipment. The proper implementation of this rate testing mechanism enabled a high quality and accuracy of rate test data, resulting in an increase in rate testing validity by 30%. Also, the rate testing mechanism inspired a culture of continuous effective communication for all involved parties during the testing operation. The decision-making tree transforms the validation process from subjective thinking to a systematic workflow while integrating data from nearby wells with similar behavior. A high ownership level is exhibited by taking the immediate resolution of issues results in achieving high rate testing validity percentage. Running the process through standardized operating procedures is critical in generating consistent and predictable results of well performance. Additionally, accurate optimization and prediction of well performance have been realized by feeding the well model's data before and after attaining valid rate test data, which attests to the quality of the proposed rate testing mechanism.
Considering the importance of having a strategic rate testing mechanism, it is highly advised to have more frequent measurements to raise the accuracy of the measurements presented. An ideal strategic rate testing mechanism has to be economical enough to be placed in many production wells, allow the tests to be performed in an organized manner, improve measurement accuracy, and, more importantly, achieve automated and supervised well tests processes.