差分私有非线性典型相关分析

Yanning Shen
{"title":"差分私有非线性典型相关分析","authors":"Yanning Shen","doi":"10.1109/SAM48682.2020.9104302","DOIUrl":null,"url":null,"abstract":"Canonical correlation analysis (CCA) is a well-documented subspace learning approach widely used to seek for hidden sources common to two or multiple datasets. CCA has been applied in various learning tasks, such as dimensionality reduction, blind source separation, classification, and data fusion. Specifically, CCA aims at finding the subspaces for multi-view datasets, such that the projections of the multiple views onto the sought subspace is maximally correlated. However, simple linear projections may not be able to exploit general nonlinear projections, which motivates the development of nonlinear CCA. However, both conventional CCA and its non-linear variants do not take into consideration the data privacy, which is crucial especially when coping with personal data. To address this limitation, the present paper studies differentially private (DP) scheme for nonlinear CCA with privacy guarantee. Numerical tests on real datasets are carried out to showcase the effectiveness of the proposed algorithms.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"21 6 Suppl 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentially Private Nonlinear Canonical Correlation Analysis\",\"authors\":\"Yanning Shen\",\"doi\":\"10.1109/SAM48682.2020.9104302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canonical correlation analysis (CCA) is a well-documented subspace learning approach widely used to seek for hidden sources common to two or multiple datasets. CCA has been applied in various learning tasks, such as dimensionality reduction, blind source separation, classification, and data fusion. Specifically, CCA aims at finding the subspaces for multi-view datasets, such that the projections of the multiple views onto the sought subspace is maximally correlated. However, simple linear projections may not be able to exploit general nonlinear projections, which motivates the development of nonlinear CCA. However, both conventional CCA and its non-linear variants do not take into consideration the data privacy, which is crucial especially when coping with personal data. To address this limitation, the present paper studies differentially private (DP) scheme for nonlinear CCA with privacy guarantee. Numerical tests on real datasets are carried out to showcase the effectiveness of the proposed algorithms.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"21 6 Suppl 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

典型相关分析(CCA)是一种记录良好的子空间学习方法,广泛用于寻找两个或多个数据集共同的隐藏源。CCA已应用于各种学习任务,如降维、盲源分离、分类和数据融合。具体来说,CCA旨在为多视图数据集寻找子空间,从而使多个视图在所寻找的子空间上的投影最大程度地相关。然而,简单的线性投影可能无法利用一般的非线性投影,这促使了非线性CCA的发展。然而,传统的CCA及其非线性变体都没有考虑到数据隐私,这一点在处理个人数据时尤为重要。为了解决这一局限性,本文研究了具有隐私保证的非线性CCA的差分私有(DP)方案。在实际数据集上进行了数值测试,验证了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differentially Private Nonlinear Canonical Correlation Analysis
Canonical correlation analysis (CCA) is a well-documented subspace learning approach widely used to seek for hidden sources common to two or multiple datasets. CCA has been applied in various learning tasks, such as dimensionality reduction, blind source separation, classification, and data fusion. Specifically, CCA aims at finding the subspaces for multi-view datasets, such that the projections of the multiple views onto the sought subspace is maximally correlated. However, simple linear projections may not be able to exploit general nonlinear projections, which motivates the development of nonlinear CCA. However, both conventional CCA and its non-linear variants do not take into consideration the data privacy, which is crucial especially when coping with personal data. To address this limitation, the present paper studies differentially private (DP) scheme for nonlinear CCA with privacy guarantee. Numerical tests on real datasets are carried out to showcase the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1