{"title":"对齐,出席和定位:在有限监督下通过造影剂引起的注意网络进行胸部x线诊断","authors":"Jingyun Liu, Gangming Zhao, Yu Fei, Ming Zhang, Yizhou Wang, Yizhou Yu","doi":"10.1109/ICCV.2019.01073","DOIUrl":null,"url":null,"abstract":"Obstacles facing accurate identification and localization of diseases in chest X-ray images lie in the lack of high-quality images and annotations. In this paper, we propose a Contrast Induced Attention Network (CIA-Net), which exploits the highly structured property of chest X-ray images and localizes diseases via contrastive learning on the aligned positive and negative samples. To force the attention module to focus only on sites of abnormalities, we also introduce a learnable alignment module to adjust all the input images, which eliminates variations of scales, angles, and displacements of X-ray images generated under bad scan conditions. We show that the use of contrastive attention and alignment module allows the model to learn rich identification and localization information using only a small amount of location annotations, resulting in state-of-the-art performance in NIH chest X-ray dataset.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"177 1","pages":"10631-10640"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Align, Attend and Locate: Chest X-Ray Diagnosis via Contrast Induced Attention Network With Limited Supervision\",\"authors\":\"Jingyun Liu, Gangming Zhao, Yu Fei, Ming Zhang, Yizhou Wang, Yizhou Yu\",\"doi\":\"10.1109/ICCV.2019.01073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstacles facing accurate identification and localization of diseases in chest X-ray images lie in the lack of high-quality images and annotations. In this paper, we propose a Contrast Induced Attention Network (CIA-Net), which exploits the highly structured property of chest X-ray images and localizes diseases via contrastive learning on the aligned positive and negative samples. To force the attention module to focus only on sites of abnormalities, we also introduce a learnable alignment module to adjust all the input images, which eliminates variations of scales, angles, and displacements of X-ray images generated under bad scan conditions. We show that the use of contrastive attention and alignment module allows the model to learn rich identification and localization information using only a small amount of location annotations, resulting in state-of-the-art performance in NIH chest X-ray dataset.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"177 1\",\"pages\":\"10631-10640\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.01073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.01073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Align, Attend and Locate: Chest X-Ray Diagnosis via Contrast Induced Attention Network With Limited Supervision
Obstacles facing accurate identification and localization of diseases in chest X-ray images lie in the lack of high-quality images and annotations. In this paper, we propose a Contrast Induced Attention Network (CIA-Net), which exploits the highly structured property of chest X-ray images and localizes diseases via contrastive learning on the aligned positive and negative samples. To force the attention module to focus only on sites of abnormalities, we also introduce a learnable alignment module to adjust all the input images, which eliminates variations of scales, angles, and displacements of X-ray images generated under bad scan conditions. We show that the use of contrastive attention and alignment module allows the model to learn rich identification and localization information using only a small amount of location annotations, resulting in state-of-the-art performance in NIH chest X-ray dataset.