对齐,出席和定位:在有限监督下通过造影剂引起的注意网络进行胸部x线诊断

Jingyun Liu, Gangming Zhao, Yu Fei, Ming Zhang, Yizhou Wang, Yizhou Yu
{"title":"对齐,出席和定位:在有限监督下通过造影剂引起的注意网络进行胸部x线诊断","authors":"Jingyun Liu, Gangming Zhao, Yu Fei, Ming Zhang, Yizhou Wang, Yizhou Yu","doi":"10.1109/ICCV.2019.01073","DOIUrl":null,"url":null,"abstract":"Obstacles facing accurate identification and localization of diseases in chest X-ray images lie in the lack of high-quality images and annotations. In this paper, we propose a Contrast Induced Attention Network (CIA-Net), which exploits the highly structured property of chest X-ray images and localizes diseases via contrastive learning on the aligned positive and negative samples. To force the attention module to focus only on sites of abnormalities, we also introduce a learnable alignment module to adjust all the input images, which eliminates variations of scales, angles, and displacements of X-ray images generated under bad scan conditions. We show that the use of contrastive attention and alignment module allows the model to learn rich identification and localization information using only a small amount of location annotations, resulting in state-of-the-art performance in NIH chest X-ray dataset.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"177 1","pages":"10631-10640"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Align, Attend and Locate: Chest X-Ray Diagnosis via Contrast Induced Attention Network With Limited Supervision\",\"authors\":\"Jingyun Liu, Gangming Zhao, Yu Fei, Ming Zhang, Yizhou Wang, Yizhou Yu\",\"doi\":\"10.1109/ICCV.2019.01073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstacles facing accurate identification and localization of diseases in chest X-ray images lie in the lack of high-quality images and annotations. In this paper, we propose a Contrast Induced Attention Network (CIA-Net), which exploits the highly structured property of chest X-ray images and localizes diseases via contrastive learning on the aligned positive and negative samples. To force the attention module to focus only on sites of abnormalities, we also introduce a learnable alignment module to adjust all the input images, which eliminates variations of scales, angles, and displacements of X-ray images generated under bad scan conditions. We show that the use of contrastive attention and alignment module allows the model to learn rich identification and localization information using only a small amount of location annotations, resulting in state-of-the-art performance in NIH chest X-ray dataset.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"177 1\",\"pages\":\"10631-10640\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.01073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.01073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

胸部x线图像中疾病的准确识别和定位面临的障碍是缺乏高质量的图像和注释。在本文中,我们提出了一个对比度诱导注意网络(CIA-Net),该网络利用胸部x线图像的高度结构化特性,通过对对齐的正、负样本的对比学习来定位疾病。为了迫使注意力模块只关注异常部位,我们还引入了一个可学习的对齐模块来调整所有输入图像,从而消除了在不良扫描条件下生成的x射线图像的尺度、角度和位移的变化。我们表明,使用对比注意和对齐模块允许模型仅使用少量的位置注释学习丰富的识别和定位信息,从而在NIH胸部x射线数据集中获得最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Align, Attend and Locate: Chest X-Ray Diagnosis via Contrast Induced Attention Network With Limited Supervision
Obstacles facing accurate identification and localization of diseases in chest X-ray images lie in the lack of high-quality images and annotations. In this paper, we propose a Contrast Induced Attention Network (CIA-Net), which exploits the highly structured property of chest X-ray images and localizes diseases via contrastive learning on the aligned positive and negative samples. To force the attention module to focus only on sites of abnormalities, we also introduce a learnable alignment module to adjust all the input images, which eliminates variations of scales, angles, and displacements of X-ray images generated under bad scan conditions. We show that the use of contrastive attention and alignment module allows the model to learn rich identification and localization information using only a small amount of location annotations, resulting in state-of-the-art performance in NIH chest X-ray dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1