gamboostLSS:一个在GAMLSS框架中用于模型构建和变量选择的R包

B. Hofner, A. Mayr, M. Schmid
{"title":"gamboostLSS:一个在GAMLSS框架中用于模型构建和变量选择的R包","authors":"B. Hofner, A. Mayr, M. Schmid","doi":"10.18637/JSS.V074.I01","DOIUrl":null,"url":null,"abstract":"Generalized additive models for location, scale and shape (GAMLSS) are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we use a data set on stunted growth in India. In addition to the specification and application of the model itself, we present a variety of convenience functions, including methods for tuning parameter selection, prediction and visualization of results. The package gamboostLSS is available from CRAN (this http URL).","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework\",\"authors\":\"B. Hofner, A. Mayr, M. Schmid\",\"doi\":\"10.18637/JSS.V074.I01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized additive models for location, scale and shape (GAMLSS) are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we use a data set on stunted growth in India. In addition to the specification and application of the model itself, we present a variety of convenience functions, including methods for tuning parameter selection, prediction and visualization of results. The package gamboostLSS is available from CRAN (this http URL).\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V074.I01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V074.I01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

摘要

广义加性位置、尺度和形状模型(GAMLSS)是一类灵活的回归模型,它允许同时对分布函数的多个参数(如平均值和标准差)进行建模。利用R包gamboostLSS,我们提供了一种增强方法来拟合这些模型。在这个正则化回归框架中,变量选择和模型选择自然是可用的。为了介绍和说明R包gamboostLSS及其基础设施,我们使用了印度发展迟缓的数据集。除了模型本身的规范和应用外,我们还提供了各种方便的功能,包括调整参数选择,预测和结果可视化的方法。包gamboostLSS可从CRAN(此http URL)获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework
Generalized additive models for location, scale and shape (GAMLSS) are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we use a data set on stunted growth in India. In addition to the specification and application of the model itself, we present a variety of convenience functions, including methods for tuning parameter selection, prediction and visualization of results. The package gamboostLSS is available from CRAN (this http URL).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1