{"title":"天然气水合物储层综述:形成与解离热力学和岩石流体性质","authors":"Sherif Fakher, Y. Elgahawy, H. Abdelaal","doi":"10.2523/IPTC-19373-MS","DOIUrl":null,"url":null,"abstract":"\n Gas hydrates reservoirs are a type of unconventional reservoir that is an extremely abundant and ubiquitous source of energy. They are also relatively cleaner than most other hydrocarbon sources which makes them an even more attractive source of energy. The potential of this source of energy has, however, not been utilized since very little production has ever taken place from these reservoirs due to their complexity. This research provides an understanding of gas hydrates thermodynamics and reservoir properties in order to assist in properly modelling the hydrate flow in porous media. The research also provides a road map to the current production methods that have been used in pilot tests in order to produce from gas hydrates reservoirs. The production methods explained include depressurization, thermal stimulation, inhibitor injection, combined methods, carbon dioxide injection, and mining. The mechanism of each method is fully explained, and the advantages and disadvantages of each method are also explained. Several case studies worldwide are also discussed to show how each production method has been used to produce from the gas hydrate reservoirs. The results from the case studies are also used to reach conclusions on how each method can be improved upon. To the author's knowledge, no publication has provided a complete overview on gas hydrates and their production mechanism which makes this research a crucial step in providing an overview on many aspects of gas hydrates reservoirs and their production mechanisms and potential. Understanding the mechanisms to produce from gas hydrate reservoirs is a crucial step in the hydrocarbon industry to allow us to tap into this vast source of energy in the near future.","PeriodicalId":11267,"journal":{"name":"Day 3 Thu, March 28, 2019","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Comprehensive Review on Gas Hydrate Reservoirs: Formation and Dissociation Thermodynamics and Rock and Fluid Properties\",\"authors\":\"Sherif Fakher, Y. Elgahawy, H. Abdelaal\",\"doi\":\"10.2523/IPTC-19373-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Gas hydrates reservoirs are a type of unconventional reservoir that is an extremely abundant and ubiquitous source of energy. They are also relatively cleaner than most other hydrocarbon sources which makes them an even more attractive source of energy. The potential of this source of energy has, however, not been utilized since very little production has ever taken place from these reservoirs due to their complexity. This research provides an understanding of gas hydrates thermodynamics and reservoir properties in order to assist in properly modelling the hydrate flow in porous media. The research also provides a road map to the current production methods that have been used in pilot tests in order to produce from gas hydrates reservoirs. The production methods explained include depressurization, thermal stimulation, inhibitor injection, combined methods, carbon dioxide injection, and mining. The mechanism of each method is fully explained, and the advantages and disadvantages of each method are also explained. Several case studies worldwide are also discussed to show how each production method has been used to produce from the gas hydrate reservoirs. The results from the case studies are also used to reach conclusions on how each method can be improved upon. To the author's knowledge, no publication has provided a complete overview on gas hydrates and their production mechanism which makes this research a crucial step in providing an overview on many aspects of gas hydrates reservoirs and their production mechanisms and potential. Understanding the mechanisms to produce from gas hydrate reservoirs is a crucial step in the hydrocarbon industry to allow us to tap into this vast source of energy in the near future.\",\"PeriodicalId\":11267,\"journal\":{\"name\":\"Day 3 Thu, March 28, 2019\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, March 28, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/IPTC-19373-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 28, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/IPTC-19373-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comprehensive Review on Gas Hydrate Reservoirs: Formation and Dissociation Thermodynamics and Rock and Fluid Properties
Gas hydrates reservoirs are a type of unconventional reservoir that is an extremely abundant and ubiquitous source of energy. They are also relatively cleaner than most other hydrocarbon sources which makes them an even more attractive source of energy. The potential of this source of energy has, however, not been utilized since very little production has ever taken place from these reservoirs due to their complexity. This research provides an understanding of gas hydrates thermodynamics and reservoir properties in order to assist in properly modelling the hydrate flow in porous media. The research also provides a road map to the current production methods that have been used in pilot tests in order to produce from gas hydrates reservoirs. The production methods explained include depressurization, thermal stimulation, inhibitor injection, combined methods, carbon dioxide injection, and mining. The mechanism of each method is fully explained, and the advantages and disadvantages of each method are also explained. Several case studies worldwide are also discussed to show how each production method has been used to produce from the gas hydrate reservoirs. The results from the case studies are also used to reach conclusions on how each method can be improved upon. To the author's knowledge, no publication has provided a complete overview on gas hydrates and their production mechanism which makes this research a crucial step in providing an overview on many aspects of gas hydrates reservoirs and their production mechanisms and potential. Understanding the mechanisms to produce from gas hydrate reservoirs is a crucial step in the hydrocarbon industry to allow us to tap into this vast source of energy in the near future.