Jian-Hui Li, Xianzhu Fu, Guihua Zhou, Jingli Luo, K. Chuang, A. R. Sanger
{"title":"FeCrO纳米颗粒作为乙烷质子传导燃料电池反应器的阳极催化剂共产乙烯和电","authors":"Jian-Hui Li, Xianzhu Fu, Guihua Zhou, Jingli Luo, K. Chuang, A. R. Sanger","doi":"10.1155/2011/407480","DOIUrl":null,"url":null,"abstract":"Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3-𝛿 (LSF) as cathode material, and BaCe0.7Zr0.1Y0.2O3-𝛿 (BCZY) perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"FeCrO Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity\",\"authors\":\"Jian-Hui Li, Xianzhu Fu, Guihua Zhou, Jingli Luo, K. Chuang, A. R. Sanger\",\"doi\":\"10.1155/2011/407480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3-𝛿 (LSF) as cathode material, and BaCe0.7Zr0.1Y0.2O3-𝛿 (BCZY) perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.\",\"PeriodicalId\":7371,\"journal\":{\"name\":\"Advances in Physical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/407480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/407480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FeCrO Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity
Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3-𝛿 (LSF) as cathode material, and BaCe0.7Zr0.1Y0.2O3-𝛿 (BCZY) perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.