大气化学输送模式中PM2.5模拟对云下冲刷方案的敏感性评估

Xingcheng Lu, J. Fung
{"title":"大气化学输送模式中PM2.5模拟对云下冲刷方案的敏感性评估","authors":"Xingcheng Lu, J. Fung","doi":"10.1080/16000889.2018.1476435","DOIUrl":null,"url":null,"abstract":"Abstract This study analyses the sensitivity of PM2.5 simulation and source apportionment results by integrating different below-cloud washout (BCW) schemes from various models into the CAMx model during the rainy days (3–13 September 2010). Furthermore, this study has also considered the influence of different raindrop size distribution parameterizations on the simulation. PM2.5 time series, spatial maps and the average concentration of the study region using different BCW schemes are presented. Our results show that different BCW schemes can cause over 50 μg m−3 discrepancies in a PM2.5 simulation during the heavy rain periods. The source apportionment (, and ) results for some cities (e.g. Hong Kong) are also sensitive to the choice of the BCW scheme. After implementing the composition dependent BCW coefficients calculated by using the field observation data, the PM2.5 simulation performance was improved and mean bias was reduced to 0.5 μg m−3 during the study period. Future BCW studies should focus on the effects caused by aerosol compositions and raindrop size distributions in order to produce reliable simulation results for the rainy season.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"22 1","pages":"1 - 17"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sensitivity assessment of PM2.5 simulation to the below-cloud washout schemes in an atmospheric chemical transport model\",\"authors\":\"Xingcheng Lu, J. Fung\",\"doi\":\"10.1080/16000889.2018.1476435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study analyses the sensitivity of PM2.5 simulation and source apportionment results by integrating different below-cloud washout (BCW) schemes from various models into the CAMx model during the rainy days (3–13 September 2010). Furthermore, this study has also considered the influence of different raindrop size distribution parameterizations on the simulation. PM2.5 time series, spatial maps and the average concentration of the study region using different BCW schemes are presented. Our results show that different BCW schemes can cause over 50 μg m−3 discrepancies in a PM2.5 simulation during the heavy rain periods. The source apportionment (, and ) results for some cities (e.g. Hong Kong) are also sensitive to the choice of the BCW scheme. After implementing the composition dependent BCW coefficients calculated by using the field observation data, the PM2.5 simulation performance was improved and mean bias was reduced to 0.5 μg m−3 during the study period. Future BCW studies should focus on the effects caused by aerosol compositions and raindrop size distributions in order to produce reliable simulation results for the rainy season.\",\"PeriodicalId\":22320,\"journal\":{\"name\":\"Tellus B: Chemical and Physical Meteorology\",\"volume\":\"22 1\",\"pages\":\"1 - 17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus B: Chemical and Physical Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16000889.2018.1476435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus B: Chemical and Physical Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16000889.2018.1476435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文通过将不同模式的云下冲洗(BCW)方案整合到CAMx模型中,分析了PM2.5模拟和源分配结果的敏感性。此外,本文还考虑了不同雨滴大小分布参数化对模拟的影响。给出了不同BCW方案下研究区PM2.5的时间序列、空间图和平均浓度。结果表明,不同的BCW方案对暴雨期PM2.5模拟的影响大于50 μg m−3。一些城市(例如香港)的源分配(和)结果对BCW方案的选择也很敏感。采用利用野外观测数据计算的成分相关BCW系数,提高了PM2.5模拟性能,研究期间平均偏差降至0.5 μg m−3。为了获得可靠的雨季模拟结果,未来的BCW研究应重点关注气溶胶成分和雨滴大小分布对BCW的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity assessment of PM2.5 simulation to the below-cloud washout schemes in an atmospheric chemical transport model
Abstract This study analyses the sensitivity of PM2.5 simulation and source apportionment results by integrating different below-cloud washout (BCW) schemes from various models into the CAMx model during the rainy days (3–13 September 2010). Furthermore, this study has also considered the influence of different raindrop size distribution parameterizations on the simulation. PM2.5 time series, spatial maps and the average concentration of the study region using different BCW schemes are presented. Our results show that different BCW schemes can cause over 50 μg m−3 discrepancies in a PM2.5 simulation during the heavy rain periods. The source apportionment (, and ) results for some cities (e.g. Hong Kong) are also sensitive to the choice of the BCW scheme. After implementing the composition dependent BCW coefficients calculated by using the field observation data, the PM2.5 simulation performance was improved and mean bias was reduced to 0.5 μg m−3 during the study period. Future BCW studies should focus on the effects caused by aerosol compositions and raindrop size distributions in order to produce reliable simulation results for the rainy season.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach to Investigating the Relative Importance of Meteorological and Aerosol-Related Parameters in Determining Cloud Microphysical Properties Dimensionless Parameterizations of Air-Sea CO2 Gas Transfer Velocity on Surface Waves Transport of Mineral Dust Into the Arctic in Two Reanalysis Datasets of Atmospheric Composition The Climatic Role of Interactive Leaf Phenology in the Vegetation-Atmosphere System of Radiative-Convective Equilibrium Storm-Resolving Simulations Tropical and Boreal Forest – Atmosphere Interactions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1