{"title":"多层不确定性航空发动机剩余使用寿命预测方法","authors":"Ma JiaShun, JianFeng Wu, Yong Zhang","doi":"10.1115/1.4053906","DOIUrl":null,"url":null,"abstract":"\n Uncertainties associated with the prediction of the Remaining Useful Life (RUL) of random degradation equipment are influenced by such factors as time-varying uncertainty, individual difference, and measurement error. Given this, a predictive method for the RUL of an aero -engine with three layers of uncertainty was proposed. Firstly, historical condition monitoring data was used to generate a Composite Health Index (CHI) for characterizing the performance degradation of the engine. Then a nonlinear Wiener degradation model is built considering three layers of uncertainty. Secondly, the maximum likelihood method is applied to obtain the estimates of the priori distribution of the random coefficients in the degradation model. Then, the degradation states were updated synchronously by applying the Kalman Filtering (KF) algorithm and constructing the state-space model. Finally, the Probability Density Function (PDF) of the RUL with three layers of uncertainty was deduced from the total probability formula. A numerical example and a case study comparing several representative methods in the literature were presented using the aero-engine data. The simulation example analysis shows that the proposed method can significantly improve RUL prediction accuracy, and thus it has a particular engineering application value.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"98 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining Useful Life Prediction Method of Aero Engine With Multilayer Uncertainty\",\"authors\":\"Ma JiaShun, JianFeng Wu, Yong Zhang\",\"doi\":\"10.1115/1.4053906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Uncertainties associated with the prediction of the Remaining Useful Life (RUL) of random degradation equipment are influenced by such factors as time-varying uncertainty, individual difference, and measurement error. Given this, a predictive method for the RUL of an aero -engine with three layers of uncertainty was proposed. Firstly, historical condition monitoring data was used to generate a Composite Health Index (CHI) for characterizing the performance degradation of the engine. Then a nonlinear Wiener degradation model is built considering three layers of uncertainty. Secondly, the maximum likelihood method is applied to obtain the estimates of the priori distribution of the random coefficients in the degradation model. Then, the degradation states were updated synchronously by applying the Kalman Filtering (KF) algorithm and constructing the state-space model. Finally, the Probability Density Function (PDF) of the RUL with three layers of uncertainty was deduced from the total probability formula. A numerical example and a case study comparing several representative methods in the literature were presented using the aero-engine data. The simulation example analysis shows that the proposed method can significantly improve RUL prediction accuracy, and thus it has a particular engineering application value.\",\"PeriodicalId\":44694,\"journal\":{\"name\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4053906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Remaining Useful Life Prediction Method of Aero Engine With Multilayer Uncertainty
Uncertainties associated with the prediction of the Remaining Useful Life (RUL) of random degradation equipment are influenced by such factors as time-varying uncertainty, individual difference, and measurement error. Given this, a predictive method for the RUL of an aero -engine with three layers of uncertainty was proposed. Firstly, historical condition monitoring data was used to generate a Composite Health Index (CHI) for characterizing the performance degradation of the engine. Then a nonlinear Wiener degradation model is built considering three layers of uncertainty. Secondly, the maximum likelihood method is applied to obtain the estimates of the priori distribution of the random coefficients in the degradation model. Then, the degradation states were updated synchronously by applying the Kalman Filtering (KF) algorithm and constructing the state-space model. Finally, the Probability Density Function (PDF) of the RUL with three layers of uncertainty was deduced from the total probability formula. A numerical example and a case study comparing several representative methods in the literature were presented using the aero-engine data. The simulation example analysis shows that the proposed method can significantly improve RUL prediction accuracy, and thus it has a particular engineering application value.