生物质固体燃料热力学

M. Ioelovich
{"title":"生物质固体燃料热力学","authors":"M. Ioelovich","doi":"10.19080/AJOP.2018.02.555577","DOIUrl":null,"url":null,"abstract":"In this paper, solid fuels made of plant biomass were studied as an alternative to fossil coals. For this purpose, experimental and calculation methods were applied to determine the standard change of internal energy or specific energy of combustion enthalpies of combustion and for individaual components of plant biomass (lignin, cellulose, hemicelluloses, extractives, etc.), as well as of some additives of solid biofuels. The experiments were carried out using an oxygen bomb calorimeter, whereas calculations were performed by the equation: is number of atoms C, H and O, respectively, in molecule of organic substance or in repeat unit of polymer. Using the results obtained for individual components, the standard thermodynamic characteristics (TDC), o Y , of various biomasses and their based fuels were found according to additivity rule, as follows: is weight part of the component in the biofuel. The results revealed that calculated TDC the solid fuels were close to experimentally obtained characteristics. The obtained data evidence on adequacy of the additivity rule to evaluate the TDC of solid biofuels. It has been also found that fuel pellets consisting of plant biomass and additive of plastic binders are the most promising solid fuels, since they provide a higher value of thermal energy and increased energy density than the biomass only.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Thermodynamics of Biomass-Based Solid Fuels\",\"authors\":\"M. Ioelovich\",\"doi\":\"10.19080/AJOP.2018.02.555577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, solid fuels made of plant biomass were studied as an alternative to fossil coals. For this purpose, experimental and calculation methods were applied to determine the standard change of internal energy or specific energy of combustion enthalpies of combustion and for individaual components of plant biomass (lignin, cellulose, hemicelluloses, extractives, etc.), as well as of some additives of solid biofuels. The experiments were carried out using an oxygen bomb calorimeter, whereas calculations were performed by the equation: is number of atoms C, H and O, respectively, in molecule of organic substance or in repeat unit of polymer. Using the results obtained for individual components, the standard thermodynamic characteristics (TDC), o Y , of various biomasses and their based fuels were found according to additivity rule, as follows: is weight part of the component in the biofuel. The results revealed that calculated TDC the solid fuels were close to experimentally obtained characteristics. The obtained data evidence on adequacy of the additivity rule to evaluate the TDC of solid biofuels. It has been also found that fuel pellets consisting of plant biomass and additive of plastic binders are the most promising solid fuels, since they provide a higher value of thermal energy and increased energy density than the biomass only.\",\"PeriodicalId\":6991,\"journal\":{\"name\":\"Academic Journal of Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/AJOP.2018.02.555577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/AJOP.2018.02.555577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了以植物生物质为原料的固体燃料作为化石煤的替代品。为此,采用实验和计算方法来确定燃烧焓的内能或比能的标准变化,以及植物生物质的各个成分(木质素、纤维素、半纤维素、提取物等),以及固体生物燃料的一些添加剂。实验是用氧弹量热计进行的,而计算是用以下公式进行的:在有机物质分子或聚合物重复单元中,分别是C、H和O原子的数目。利用得到的单个组分的结果,根据可加性规则得到了各种生物质及其基燃料的标准热力学特性(TDC) o Y,如下:是生物燃料中组分的重量部分。计算结果表明,固体燃料的上止点与实验结果接近。所得数据证明了可加性规则评价固体生物燃料TDC的充分性。研究还发现,由植物生物质和塑料粘合剂添加剂组成的燃料颗粒是最有前途的固体燃料,因为它们比仅生物质提供更高的热能值和更高的能量密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamics of Biomass-Based Solid Fuels
In this paper, solid fuels made of plant biomass were studied as an alternative to fossil coals. For this purpose, experimental and calculation methods were applied to determine the standard change of internal energy or specific energy of combustion enthalpies of combustion and for individaual components of plant biomass (lignin, cellulose, hemicelluloses, extractives, etc.), as well as of some additives of solid biofuels. The experiments were carried out using an oxygen bomb calorimeter, whereas calculations were performed by the equation: is number of atoms C, H and O, respectively, in molecule of organic substance or in repeat unit of polymer. Using the results obtained for individual components, the standard thermodynamic characteristics (TDC), o Y , of various biomasses and their based fuels were found according to additivity rule, as follows: is weight part of the component in the biofuel. The results revealed that calculated TDC the solid fuels were close to experimentally obtained characteristics. The obtained data evidence on adequacy of the additivity rule to evaluate the TDC of solid biofuels. It has been also found that fuel pellets consisting of plant biomass and additive of plastic binders are the most promising solid fuels, since they provide a higher value of thermal energy and increased energy density than the biomass only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Conductivity of CaSrFe2O6-δ Plant-Based Flocculants: Alternative Materials to Synthetic Polymers for Sludge Dewatering Optical Imaging Methods for Volumetric Additive Manufacturing Sensor-based and Robot Sorting Processes and their Role in Achieving European Recycling Goals - A Review Human-Centric Regulatory in Point-of-Care Manufacturing for 3D Printed PEEK Polymer Implants with Functionalized Implant Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1