TiAlN及TiAlN- tin涂层刀片数控铣削Inconel 800合金加工参数优化

Vinod Kumar, N. Bala
{"title":"TiAlN及TiAlN- tin涂层刀片数控铣削Inconel 800合金加工参数优化","authors":"Vinod Kumar, N. Bala","doi":"10.4028/p-70w6sn","DOIUrl":null,"url":null,"abstract":"This research work is based on the machinability of an Inconel 800 alloy using TiAlN-coating and TiAlN-TiN-coating tools. In the CNC VMC Face milling process feed, depth of cut (DoC), and cutting speed consider input variables and surface roughness, Tool wear is measured for all machining conditions. To enhance the machining conditions a Taguchi L9 Design of Experiment was created. ANOVA analysis was used to identify the important variables influencing Flank wear (tool wear) and surface roughness. The signal-to-noise ratio for the ideal cutting combination was identified by evaluating the optimum surface roughness and tool wear. for the effect of coating, a comparison was done between the findings obtained using both TiAlN-coated and TiAlN-TiN tungsten carbide-coated tools. The best optimum surface roughness and tool wear of the experiment conducted under machining with TiAlN-TiN coated carbide tool resulted in .3433 µm and 128 µm respectively.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"101 1","pages":"139 - 150"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Machining Variables of Inconel 800 Alloy in CNC Face Milling Using TiAlN and TiAlN-TiN Coated Inserts\",\"authors\":\"Vinod Kumar, N. Bala\",\"doi\":\"10.4028/p-70w6sn\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research work is based on the machinability of an Inconel 800 alloy using TiAlN-coating and TiAlN-TiN-coating tools. In the CNC VMC Face milling process feed, depth of cut (DoC), and cutting speed consider input variables and surface roughness, Tool wear is measured for all machining conditions. To enhance the machining conditions a Taguchi L9 Design of Experiment was created. ANOVA analysis was used to identify the important variables influencing Flank wear (tool wear) and surface roughness. The signal-to-noise ratio for the ideal cutting combination was identified by evaluating the optimum surface roughness and tool wear. for the effect of coating, a comparison was done between the findings obtained using both TiAlN-coated and TiAlN-TiN tungsten carbide-coated tools. The best optimum surface roughness and tool wear of the experiment conducted under machining with TiAlN-TiN coated carbide tool resulted in .3433 µm and 128 µm respectively.\",\"PeriodicalId\":7271,\"journal\":{\"name\":\"Advanced Materials Research\",\"volume\":\"101 1\",\"pages\":\"139 - 150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-70w6sn\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-70w6sn","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究工作是基于使用tialn涂层和tialn - tin涂层刀具对一种因科乃尔800合金的可加工性进行研究。在数控VMC面铣削加工过程中,进给量、切削深度(DoC)和切削速度考虑输入变量和表面粗糙度,刀具磨损是在所有加工条件下测量的。为改善加工条件,建立了田口L9试验设计。方差分析用于确定影响侧面磨损(刀具磨损)和表面粗糙度的重要变量。通过评估最佳表面粗糙度和刀具磨损,确定了理想切削组合的信噪比。对于涂层的效果,比较了tialn涂层和TiAlN-TiN碳化钨涂层刀具的结果。在TiAlN-TiN涂层硬质合金刀具加工下,表面粗糙度和刀具磨损的最佳值分别为0.3433µm和128µm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Machining Variables of Inconel 800 Alloy in CNC Face Milling Using TiAlN and TiAlN-TiN Coated Inserts
This research work is based on the machinability of an Inconel 800 alloy using TiAlN-coating and TiAlN-TiN-coating tools. In the CNC VMC Face milling process feed, depth of cut (DoC), and cutting speed consider input variables and surface roughness, Tool wear is measured for all machining conditions. To enhance the machining conditions a Taguchi L9 Design of Experiment was created. ANOVA analysis was used to identify the important variables influencing Flank wear (tool wear) and surface roughness. The signal-to-noise ratio for the ideal cutting combination was identified by evaluating the optimum surface roughness and tool wear. for the effect of coating, a comparison was done between the findings obtained using both TiAlN-coated and TiAlN-TiN tungsten carbide-coated tools. The best optimum surface roughness and tool wear of the experiment conducted under machining with TiAlN-TiN coated carbide tool resulted in .3433 µm and 128 µm respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Molar Ratio and Precipitation Time of Mg/Al Hydrotalcite Synthesis on the Isomerization of Glucose into Fructose Biomaterials and Structural Materials Solid Propellant Aging Detection Method Based on Impedance Spectroscopy Exploring the Potential of α-MnO2/ Carbon Nanotubes for Improved Oxygen Reduction Reaction Performance at the Cathode of Alkaline Fuel Cells Effect of Flame Remelting on the Microstructure, Wear and Corrosion Resistance of HVOF Sprayed NiCrBSi Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1