{"title":"基于认知启发式的机会网络数据传播系统设计与性能评估","authors":"M. Conti, M. Mordacchini, A. Passarella","doi":"10.1145/2518017.2518018","DOIUrl":null,"url":null,"abstract":"In the convergence of the Cyber-Physical World, user devices will act as proxies of the humans in the cyber world. They will be required to act in a vast information landscape, asserting the relevance of data spread in the cyber world, in order to let their human users become aware of the content they really need. This is a remarkably similar situation to what the human brain has to do all the time when deciding what information coming from the surrounding environment is interesting and what can simply be ignored. The brain performs this task using so called cognitive heuristics, i.e. simple, rapid, yet very effective schemes. In this article, we propose a new approach that exploits one of these heuristics, the recognition heuristic, for developing a self-adaptive system that deals with effective data dissemination in opportunistic networks. We show how to implement it and provide an extensive analysis via simulation. Specifically, results show that the proposed solution is as effective as state-of-the-art solutions for data dissemination in opportunistic networks, while requiring far less resources. Finally, our sensitiveness analysis shows how various parameters depend on the context where nodes are situated, and suggest corresponding optimal configurations for the algorithm.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"40 1","pages":"12:1-12:32"},"PeriodicalIF":2.2000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Design and Performance Evaluation of Data Dissemination Systems for Opportunistic Networks Based on Cognitive Heuristics\",\"authors\":\"M. Conti, M. Mordacchini, A. Passarella\",\"doi\":\"10.1145/2518017.2518018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the convergence of the Cyber-Physical World, user devices will act as proxies of the humans in the cyber world. They will be required to act in a vast information landscape, asserting the relevance of data spread in the cyber world, in order to let their human users become aware of the content they really need. This is a remarkably similar situation to what the human brain has to do all the time when deciding what information coming from the surrounding environment is interesting and what can simply be ignored. The brain performs this task using so called cognitive heuristics, i.e. simple, rapid, yet very effective schemes. In this article, we propose a new approach that exploits one of these heuristics, the recognition heuristic, for developing a self-adaptive system that deals with effective data dissemination in opportunistic networks. We show how to implement it and provide an extensive analysis via simulation. Specifically, results show that the proposed solution is as effective as state-of-the-art solutions for data dissemination in opportunistic networks, while requiring far less resources. Finally, our sensitiveness analysis shows how various parameters depend on the context where nodes are situated, and suggest corresponding optimal configurations for the algorithm.\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"40 1\",\"pages\":\"12:1-12:32\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2518017.2518018\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2518017.2518018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Design and Performance Evaluation of Data Dissemination Systems for Opportunistic Networks Based on Cognitive Heuristics
In the convergence of the Cyber-Physical World, user devices will act as proxies of the humans in the cyber world. They will be required to act in a vast information landscape, asserting the relevance of data spread in the cyber world, in order to let their human users become aware of the content they really need. This is a remarkably similar situation to what the human brain has to do all the time when deciding what information coming from the surrounding environment is interesting and what can simply be ignored. The brain performs this task using so called cognitive heuristics, i.e. simple, rapid, yet very effective schemes. In this article, we propose a new approach that exploits one of these heuristics, the recognition heuristic, for developing a self-adaptive system that deals with effective data dissemination in opportunistic networks. We show how to implement it and provide an extensive analysis via simulation. Specifically, results show that the proposed solution is as effective as state-of-the-art solutions for data dissemination in opportunistic networks, while requiring far less resources. Finally, our sensitiveness analysis shows how various parameters depend on the context where nodes are situated, and suggest corresponding optimal configurations for the algorithm.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.