Siegfried Rasthofer, Steven Arzt, S. Triller, Michael Pradel
{"title":"使Malory行为恶意:Android执行环境的目标模糊","authors":"Siegfried Rasthofer, Steven Arzt, S. Triller, Michael Pradel","doi":"10.1109/ICSE.2017.35","DOIUrl":null,"url":null,"abstract":"Android applications, or apps, provide useful features to end-users, but many apps also contain malicious behavior. Modern malware makes understanding such behavior challenging by behaving maliciously only under particular conditions. For example, a malware app may check whether it runs on a real device and not an emulator, in a particular country, and alongside a specific target app, such as a vulnerable banking app. To observe the malicious behavior, a security analyst must find out and emulate all these app-specific constraints. This paper presents FuzzDroid, a framework for automatically generating an Android execution environment where an app exposes its malicious behavior. The key idea is to combine an extensible set of static and dynamic analyses through a search-based algorithm that steers the app toward a configurable target location. On recent malware, the approach reaches the target location in 75% of the apps. In total, we reach 240 code locations within an average time of only one minute. To reach these code locations, FuzzDroid generates 106 different environments, too many for a human analyst to create manually.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"17 1","pages":"300-311"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Making Malory Behave Maliciously: Targeted Fuzzing of Android Execution Environments\",\"authors\":\"Siegfried Rasthofer, Steven Arzt, S. Triller, Michael Pradel\",\"doi\":\"10.1109/ICSE.2017.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Android applications, or apps, provide useful features to end-users, but many apps also contain malicious behavior. Modern malware makes understanding such behavior challenging by behaving maliciously only under particular conditions. For example, a malware app may check whether it runs on a real device and not an emulator, in a particular country, and alongside a specific target app, such as a vulnerable banking app. To observe the malicious behavior, a security analyst must find out and emulate all these app-specific constraints. This paper presents FuzzDroid, a framework for automatically generating an Android execution environment where an app exposes its malicious behavior. The key idea is to combine an extensible set of static and dynamic analyses through a search-based algorithm that steers the app toward a configurable target location. On recent malware, the approach reaches the target location in 75% of the apps. In total, we reach 240 code locations within an average time of only one minute. To reach these code locations, FuzzDroid generates 106 different environments, too many for a human analyst to create manually.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"17 1\",\"pages\":\"300-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Making Malory Behave Maliciously: Targeted Fuzzing of Android Execution Environments
Android applications, or apps, provide useful features to end-users, but many apps also contain malicious behavior. Modern malware makes understanding such behavior challenging by behaving maliciously only under particular conditions. For example, a malware app may check whether it runs on a real device and not an emulator, in a particular country, and alongside a specific target app, such as a vulnerable banking app. To observe the malicious behavior, a security analyst must find out and emulate all these app-specific constraints. This paper presents FuzzDroid, a framework for automatically generating an Android execution environment where an app exposes its malicious behavior. The key idea is to combine an extensible set of static and dynamic analyses through a search-based algorithm that steers the app toward a configurable target location. On recent malware, the approach reaches the target location in 75% of the apps. In total, we reach 240 code locations within an average time of only one minute. To reach these code locations, FuzzDroid generates 106 different environments, too many for a human analyst to create manually.