M. Lerch, P. Svoboda, Valentin Platzgummer, M. Rupp
{"title":"双路车载中继器信道中LTE的分析","authors":"M. Lerch, P. Svoboda, Valentin Platzgummer, M. Rupp","doi":"10.1109/VTCFall.2019.8891353","DOIUrl":null,"url":null,"abstract":"In recent years, many public high-speed trains have been upgraded with active in-train repeaters in order to improve mobile service coverage for train passengers. With a repeater in place, the user equipment perceives a wireless channel with a direct path and an indirect path through the repeater delayed by several micro seconds. In vehicular scenarios, the pick-up antenna experiences a wide range of signal levels. Due to the limited output power of the repeater, the paths may arrive with similar power, which can be a problem for OFDM based systems like LTE. Drive tests in LTE have shown that uplink performance degrades, even if the delay stays within the cyclic prefix. In order to gain a better understanding, we conducted a laboratory experiment to measure, quantify, and analyze the impact of two-path channels, with different delays and power levels, onto a live LTE network. Results show uplink performance degradation and increased transmit power even for delays smaller than the cyclic prefix due to non-optimal time-synchronization. In the system under test this degradation already starts at a path power difference of 15 dB and reaches up to 50% at equal path power levels.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"25 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of LTE in Two-Path Vehicular Repeater Channels\",\"authors\":\"M. Lerch, P. Svoboda, Valentin Platzgummer, M. Rupp\",\"doi\":\"10.1109/VTCFall.2019.8891353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many public high-speed trains have been upgraded with active in-train repeaters in order to improve mobile service coverage for train passengers. With a repeater in place, the user equipment perceives a wireless channel with a direct path and an indirect path through the repeater delayed by several micro seconds. In vehicular scenarios, the pick-up antenna experiences a wide range of signal levels. Due to the limited output power of the repeater, the paths may arrive with similar power, which can be a problem for OFDM based systems like LTE. Drive tests in LTE have shown that uplink performance degrades, even if the delay stays within the cyclic prefix. In order to gain a better understanding, we conducted a laboratory experiment to measure, quantify, and analyze the impact of two-path channels, with different delays and power levels, onto a live LTE network. Results show uplink performance degradation and increased transmit power even for delays smaller than the cyclic prefix due to non-optimal time-synchronization. In the system under test this degradation already starts at a path power difference of 15 dB and reaches up to 50% at equal path power levels.\",\"PeriodicalId\":6713,\"journal\":{\"name\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"volume\":\"25 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2019.8891353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of LTE in Two-Path Vehicular Repeater Channels
In recent years, many public high-speed trains have been upgraded with active in-train repeaters in order to improve mobile service coverage for train passengers. With a repeater in place, the user equipment perceives a wireless channel with a direct path and an indirect path through the repeater delayed by several micro seconds. In vehicular scenarios, the pick-up antenna experiences a wide range of signal levels. Due to the limited output power of the repeater, the paths may arrive with similar power, which can be a problem for OFDM based systems like LTE. Drive tests in LTE have shown that uplink performance degrades, even if the delay stays within the cyclic prefix. In order to gain a better understanding, we conducted a laboratory experiment to measure, quantify, and analyze the impact of two-path channels, with different delays and power levels, onto a live LTE network. Results show uplink performance degradation and increased transmit power even for delays smaller than the cyclic prefix due to non-optimal time-synchronization. In the system under test this degradation already starts at a path power difference of 15 dB and reaches up to 50% at equal path power levels.